




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数(其中是自然对数的底数)的大致图像为()A. B. C. D.2.正的边长为2,将它沿边上的高翻折,使点与点间的距离为,此时四面体的外接球表面积为()A. B. C. D.3.关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数﹔最后根据统计数来估计的值.若,则的估计值为()A. B. C. D.4.设是虚数单位,若复数,则()A. B. C. D.5.A. B. C. D.6.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为A. B. C. D.7.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①② B.③④ C.①④ D.②④8.已知数列满足:,则()A.16 B.25 C.28 D.339.定义运算,则函数的图象是().A. B.C. D.10.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()A. B. C. D.11.若关于的不等式有正整数解,则实数的最小值为()A. B. C. D.12.如果实数满足条件,那么的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,x的系数为________.(用数值作答)14.平面向量,,(R),且与的夹角等于与的夹角,则.15.的展开式中,x5的系数是_________.(用数字填写答案)16.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.18.(12分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,,求证:若成等差数列,则也成等差数列.19.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面积.20.(12分)已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆的方程;(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.21.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b=7,D是BC边上的点,且△ACD的面积为,求sin∠ADB.22.(10分)已知直线l的极坐标方程为,圆C的参数方程为(为参数).(1)请分别把直线l和圆C的方程化为直角坐标方程;(2)求直线l被圆截得的弦长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意得,函数点定义域为且,所以定义域关于原点对称,且,所以函数为奇函数,图象关于原点对称,故选D.2、D【解析】
如图所示,设的中点为,的外接圆的圆心为,四面体的外接球的球心为,连接,利用正弦定理可得,利用球心的性质和线面垂直的性质可得四边形为平行四边形,最后利用勾股定理可求外接球的半径,从而可得外接球的表面积.【详解】如图所示,设的中点为,外接圆的圆心为,四面体的外接球的球心为,连接,则平面,.因为,故,因为,故.由正弦定理可得,故,又因为,故.因为,故平面,所以,因为平面,平面,故,故,所以四边形为平行四边形,所以,所以,故外接球的半径为,外接球的表面积为.故选:D.【点睛】本题考查平面图形的折叠以及三棱锥外接球表面积的计算,还考查正弦定理和余弦定理,折叠问题注意翻折前后的变量与不变量,外接球问题注意先确定外接球的球心的位置,然后把半径放置在可解的直角三角形中来计算,本题有一定的难度.3、B【解析】
先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【详解】因为,都是区间上的均匀随机数,所以有,,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.4、A【解析】
结合复数的除法运算和模长公式求解即可【详解】∵复数,∴,,则,故选:A.【点睛】本题考查复数的除法、模长、平方运算,属于基础题5、A【解析】
直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.6、A【解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,求出等式左边式子的范围,将等式右边代入,从而求解.【详解】解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,,当时,,当时,,,综上:.故选:A.【点睛】本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.7、D【解析】
根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.【详解】对于①,若,,,,两平面相交,但不一定垂直,故①错误;对于②,若,,则,故②正确;对于③,若,,,当,则与不平行,故③错误;对于④,若,,,则,故④正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.8、C【解析】
依次递推求出得解.【详解】n=1时,,n=2时,,n=3时,,n=4时,,n=5时,.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.9、A【解析】
由已知新运算的意义就是取得中的最小值,因此函数,只有选项中的图象符合要求,故选A.10、A【解析】
结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【详解】如图,将数字塔中的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题11、A【解析】
根据题意可将转化为,令,利用导数,判断其单调性即可得到实数的最小值.【详解】因为不等式有正整数解,所以,于是转化为,显然不是不等式的解,当时,,所以可变形为.令,则,∴函数在上单调递增,在上单调递减,而,所以当时,,故,解得.故选:A.【点睛】本题主要考查不等式能成立问题的解法,涉及到对数函数的单调性的应用,构造函数法的应用,导数的应用等,意在考查学生的转化能力,属于中档题.12、B【解析】
解:当直线过点时,最大,故选B二、填空题:本题共4小题,每小题5分,共20分。13、-40【解析】
由题意,可先由公式得出二项展开式的通项,再令10-3r=1,得r=3即可得出x项的系数【详解】的二项展开式的通项公式为,r=0,1,2,3,4,5,令,所以的二项展开式中x项的系数为.故答案为:-40.【点睛】本题考查二项式定理的应用,解题关键是灵活掌握二项式展开式通项的公式,属于基础题.14、2【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角15、-189【解析】由二项式定理得,令r=5得x5的系数是.16、1元【解析】设分别生产甲乙两种产品为桶,桶,利润为元
则根据题意可得目标函数,作出可行域,如图所示作直线然后把直线向可行域平移,
由图象知当直线经过时,目标函数的截距最大,此时最大,
由可得,即此时最大,
即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1.【点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)取的中点,证明,则平面平面,则可证平面.(2)利用,是平面的高,容易求.,再求,则点到平面的距离可求.【详解】解:(1)如图:取的中点,连接、.在中,是的中点,是的中点,平面平面,故平面在直角梯形中,,且,∴四边形是平行四边形,,同理平面又,故平面平面,又平面平面.(2)是圆的直径,点是圆上异于、的一点,又∵平面平面,平面平面平面,可得是三棱锥的高线.在直角梯形中,.设到平面的距离为,则,即由已知得,由余弦定理易知:,则解得,即点到平面的距离为故答案为:.【点睛】考查线面平行的判定和利用等体积法求距离的方法,是中档题.18、(1)3;(2);(3)见解析.【解析】
(1)依据下标的关系,有,,两式相加,即可求出;(2)依据等比数列的通项公式知,求出首项和公比即可。利用关系式,列出方程,可以解出首项和公比;(3)利用等差数列的定义,即可证出。【详解】(1)因为对任意,都有,所以,,两式相加,,解得;(2)设等比数列的首项为,公比为,因为对任意,都有,所以有,解得,又,即有,化简得,,即,或,因为,化简得,所以故。(3)因为对任意,都有,所以有,成等差数列,设公差为,,,,,由等差数列的定义知,也成等差数列。【点睛】本题主要考查等差、等比数列的定义以及赋值法的应用,意在考查学生的逻辑推理,数学建模,综合运用数列知识的能力。19、(1);(2).【解析】
(1)由正弦定理化简已知等式可得sinBcosA﹣sinAsinB=1,结合sinB>1,可求tanA=,结合范围A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根据三角形的面积公式即可计算得解.【详解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根据正弦定理得到∴b=6,∴S△ABC=ab==6.【点睛】本题主要考查了正弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20、(1);(2)存在,且方程为或.【解析】
(1)依题意列出关于a,b,c的方程组,求得a,b,进而可得到椭圆方程;(2)联立直线和椭圆得到,要使以为直径的圆过椭圆的左顶点,则,结合韦达定理可得到参数值.【详解】(1)直线的一般方程为.依题意,解得,故椭圆的方程式为.(2)假若存在这样的直线,当斜率不存在时,以为直径的圆显然不经过椭圆的左顶点,所以可设直线的斜率为,则直线的方程为.由,得.由,得.记,的坐标分别为,,则,,而.要使以为直径的圆过椭圆的左顶点,则,即,所以,整理解得或,所以存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点,直线的方程为或.【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21、(1);(2).【解析】
(1)根据诱导公式和二倍角公式,将已知等式化为角关系式,求出,再由二倍角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度建筑企业农民工劳动合同安全生产责任与培训协议
- 上虞区水务集团2025年度合同工工资待遇与职业发展支持合同
- 2025年度驿站股权转让与品牌使用许可合同
- 二零二五年度不锈钢雨棚智能遮阳与雨水收集合同
- 2025年度智能电网建设合作解除合同书
- 科技引领独特的培训汇报助力企业进步
- 二零二五年度村委会集体土地入股体育健身俱乐部入股协议
- 二零二五年度高端印刷技术保密协议合同
- 2025年度生态园区租赁与绿色环保服务协议
- 2025至2031年中国翻板式车库门电机行业投资前景及策略咨询研究报告
- 火锅店运营管理的问题与解决方案
- 【正版授权】 ISO 724:2023 EN ISO general purpose metric screw threads - Basic dimensions
- CJJ2-2008城市桥梁工程施工与质量验收规范
- 新媒体营销:营销方式+推广技巧+案例实训 微课版 第2版 教学大纲
- 基于街区尺度的精细化大气污染溯源模型建设需求
- 德育教育研究课题申报书
- 2024年岳阳职业技术学院单招职业适应性测试题库汇编
- (高清版)JTG 3810-2017 公路工程建设项目造价文件管理导则
- 《ISO31000:2024风险管理指南》指导手册(雷泽佳译2024-04)
- 2024年甘肃省公务员公共基础知识重点考试题库(含答案)
- 《拒绝校园欺凌 防霸凌主题班会》课件
评论
0/150
提交评论