版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.2.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.363.已知为虚数单位,若复数,则A. B.C. D.4.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A. B. C. D.5.在三棱锥中,,,则三棱锥外接球的表面积是()A. B. C. D.6.已知函数若对区间内的任意实数,都有,则实数的取值范围是()A. B. C. D.7.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=()A.1 B. C.2 D.48.已知函数满足,设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知函数,,若对任意的总有恒成立,记的最小值为,则最大值为()A.1 B. C. D.10.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)11.设,,,则、、的大小关系为()A. B. C. D.12.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,在方向上的投影为,则与的夹角为_________.14.函数过定点________.15.请列举用0,1,2,3这4个数字所组成的无重复数字且比210大的所有三位奇数:___________.16.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.18.(12分)已知,函数有最小值7.(1)求的值;(2)设,,求证:.19.(12分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.20.(12分)设函数.(1)求不等式的解集;(2)若的最小值为,且,求的最小值.21.(12分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.22.(10分)已知函数.(1)当时,求的单调区间.(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程.(3)已知分别在,处取得极值,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.2、B【解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.3、B【解析】
因为,所以,故选B.4、C【解析】
如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.考点:外接球表面积和椎体的体积.5、B【解析】
取的中点,连接、,推导出,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【详解】取的中点,连接、,由和都是正三角形,得,,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.6、C【解析】分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.详解:由题得.当a<1时,,所以函数f(x)在单调递减,因为对区间内的任意实数,都有,所以,所以故a≥1,与a<1矛盾,故a<1矛盾.当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.所以因为对区间内的任意实数,都有,所以,所以即令,所以所以函数g(a)在(1,e)上单调递减,所以,所以当1≤a<e时,满足题意.当a时,函数f(x)在(0,1)单调递增,因为对区间内的任意实数,都有,所以,故1+1,所以故综上所述,a∈.故选C.点睛:本题的难点在于“对区间内的任意实数,都有”的转化.由于是函数的问题,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等)来分析解答问题.本题就是把这个条件和函数的单调性和最值联系起来,完成了数学问题的等价转化,找到了问题的突破口.7、C【解析】
设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,故选C.【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.8、B【解析】
结合函数的对应性,利用充分条件和必要条件的定义进行判断即可.【详解】解:若,则,即成立,若,则由,得,则“”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合函数的对应性是解决本题的关键,属于基础题.9、C【解析】
对任意的总有恒成立,因为,对恒成立,可得,令,可得,结合已知,即可求得答案.【详解】对任意的总有恒成立,对恒成立,令,可得令,得当,当,,故令,得当时,当,当时,故选:C.【点睛】本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.10、C【解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.11、D【解析】
因为,,所以且在上单调递减,且所以,所以,又因为,,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.12、C【解析】
在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】∵直线是曲线的一条对称轴.,又..∴平移后曲线为.曲线的一个对称中心为..,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由向量投影的定义可求得两向量夹角的余弦值,从而得角的大小.【详解】在方向上的投影为,即夹角为.故答案为:.【点睛】本题考查求向量的夹角,掌握向量投影的定义是解题关键.14、【解析】
令,,与参数无关,即可得到定点.【详解】由指数函数的性质,可得,函数值与参数无关,所有过定点.故答案为:【点睛】此题考查函数的定点问题,关键在于找出自变量的取值使函数值与参数无关,熟记常见函数的定点可以节省解题时间.15、231,321,301,1【解析】
分个位数字是1、3两种情况讨论,即得解【详解】0,1,2,3这4个数字所组成的无重复数字比210大的所有三位奇数有:(1)当个位数字是1时,数字可以是231,321,301;(2)当个位数字是3时数字可以是1.故答案为:231,321,301,1【点睛】本题考查了分类计数法的应用,考查了学生分类讨论,数学运算的能力,属于基础题.16、【解析】
设,,,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【详解】解:由已知,的三边长,,成等差数列,设,,,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,,在直角中,由勾股定理,,即:,∴离心率.故答案为:.【点睛】本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知在圆内,当时,线段长最小为当点与点不重合时,设,化简得当点与点重合时,也满足上式,故点的轨迹方程为【点睛】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.18、(1).(2)见解析【解析】
(1)由绝对值三解不等式可得,所以当时,,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【详解】解:(1)∵,∴当时,,解得.(2)∵,∴,∴,当且仅当,即,时,等号成立.∴.【点睛】本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题.19、(1).(2)的方程为.【解析】
(1)令,则,由此能求出点C的轨迹方程.(2)令,令直线,联立,得,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方程。【详解】解:(1)因为,即直线的斜率分别为且,设点,则,整理得.(2)令,易知直线不与轴重合,令直线,与联立得,所以有,由,故,即,从而,解得,即。所以直线的方程为。【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。20、(1)或(2)最小值为.【解析】
(1)讨论,,三种情况,分别计算得到答案.(2)计算得到,再利用均值不等式计算得到答案.【详解】(1)当时,由,解得;当时,由,解得;当时,由,解得.所以所求不等式的解集为或.(2)根据函数图像知:当时,,所以.因为,由,可知,所以,当且仅当,,时,等号成立.所以的最小值为.【点睛】本题考查了解绝对值不等式,函数最值,均值不等式,意在考查学生对于不等式,函数知识的综合应用.21、(Ⅰ);(Ⅱ)有最大值,最大值为3.【解析】
(Ⅰ)利用正弦定理将角化边,再由余弦定理计算可得;(Ⅱ)由正弦定理可得,则,再根据正弦函数的性质计算可得;【详解】(Ⅰ)由得再由正弦定理得因此,又因为,所以.(Ⅱ)当时,的周长有最大值,且最大值为3,理由如下:由正弦定理得,所以,所以.因为,所以,所以当即时,取到最大值2,所以的周长有最大值,最大值为3.【点睛】本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档题.22、(1)单调递增区间为,;单调递减区间为;(2),;(3)证明见解析.【解析】
(1)由的正负可确定的单调区间;(2)利用基本不等式可求得时,取得最小值,由导数的几何意义可知,从而求得,求得切点坐标后,可得到切线方程;(3)由极值点的定义可知是的两个不等正根,由判别式大于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度高端装备制造产销合同3篇
- 基于2024年度市场扩张的收购合同2篇
- 肱骨骨折病人的护理答辩
- 血液科消防演练
- 青岛市房地产项目规划合同(2024版含建筑设计)
- 玉林师范学院《色彩》2022-2023学年第一学期期末试卷
- 玉林师范学院《检察理论业务实训》2023-2024学年第一学期期末试卷
- 玉林师范学院《概率论实训》2021-2022学年第一学期期末试卷
- 2024年度跨国二手汽车购销与运输服务合同3篇
- 无绿卡怎做职业规划
- 《思想者法罗丹》课件
- 五年级-科学素养专项考核试题
- 中国古代广告的传播
- 浪潮君悦文化传媒有限公司简介
- 辐射安全与防护培训
- 温州南麂岛与大陆联网 35千伏输变电工程竣工环境保护验收调查报告
- 农田防护林网工程施工方案
- 建筑与市政施工现场安全卫生与职业健康通用规范培训课件
- 公司成本费用管理制度
- 营养改善计划管理制度
- 酒店样板房材料汇总清单
评论
0/150
提交评论