河北省邢台市内丘中学2025届高一下数学期末检测模拟试题含解析_第1页
河北省邢台市内丘中学2025届高一下数学期末检测模拟试题含解析_第2页
河北省邢台市内丘中学2025届高一下数学期末检测模拟试题含解析_第3页
河北省邢台市内丘中学2025届高一下数学期末检测模拟试题含解析_第4页
河北省邢台市内丘中学2025届高一下数学期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省邢台市内丘中学2025届高一下数学期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过两点,则的斜率为()A. B. C. D.2.甲:(是常数)乙:丙:(、是常数)丁:(、是常数),以上能成为数列是等差数列的充要条件的有几个()A.1 B.2 C.3 D.43.过点的圆的切线方程是()A. B.或C.或 D.或4.如图所示是的图象的一段,它的一个解析式为()A. B.C. D.5.某几何体三视图如图所示,则该几何体中的棱与面相互平行的有()A.2对 B.3对 C.4对 D.5对6.已知,那么()A. B. C. D.7.如图是一三棱锥的三视图,则此三棱锥内切球的体积为()A. B. C. D.8.已知函数,那么下列式子:①;②;③;④;其中恒成立的是()A.①② B.②③ C.①②④ D.②③④9.若对任意,不等式恒成立,则a的取值范围为()A. B. C. D.10.已知实数满足且,则下列选项中不一定成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在,若,,,则__________________.12.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.13.设为等差数列,若,则_____.14.中,内角,,所对的边分别是,,,且,,则的值为__________.15.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)16.已知向量,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,过点作直线交圆于、两点.(1)当经过圆心时,求直线的方程;(2)当直线的倾斜角为时,求弦的长;(3)求直线被圆截得的弦长时,求以线段为直径的圆的方程.18.在中,角A,B,C的对边分别是a,b,c,.(1)求角A的大小;(2)若,,求的面积.19.已知分别是的三个内角所对的边.(1)若的面积,求的值;(2)若,且,试判断的形状.20.在正四棱柱中,底面边长为,侧棱长为.(1)求证:平面平面;(2)求直线与平面所成的角的正弦值;(3)设为截面内-点(不包括边界),求到面,面,面的距离平方和的最小值.21.近年来,石家庄经济快速发展,跻身新三线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,石家庄的交通优势在同级别的城市内无能出其右.为了调查石家庄市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中.(1)求,的值;(2)求被调查的市民的满意程度的平均数,中位数(保留小数点后两位),众数;(3)若按照分层抽样从,中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。2、D【解析】

由等差数列的定义和求和公式、通项公式的关系,以及性质,即可得到结论.【详解】数列是等差数列,设公差为,由定义可得(是常数),且(是常数),,令,即(、是常数),等差数列通项,令,即(、是常数),综上可得甲乙丙丁都对.故选:D.【点睛】本题考查等差数列的定义和通项公式、求和公式的关系,考查充分必要条件的定义,考查推理能力,属于基础题.3、D【解析】

先由题意得到圆的圆心坐标,与半径,设所求直线方程为,根据直线与圆相切,结合点到直线距离公式,即可求出结果.【详解】因为圆的圆心为,半径为1,由题意,易知所求切线斜率存在,设过点与圆相切的直线方程为,即,所以有,整理得,解得,或;因此,所求直线方程分别为:或,整理得或.故选D【点睛】本题主要考查求过圆外一点的切线方程,根据直线与圆相切,结合点到直线距离公式即可求解,属于常考题型.4、D【解析】

根据函数的图象,得出振幅与周期,从而求出与的值.【详解】根据函数的图象知,振幅,周期,即,解得;所以时,,;解得,,所以函数的一个解析式为.故答案为D.【点睛】本题考查了函数的图象与性质的应用问题,考查三角函数的解析式的求法,属于基础题.5、C【解析】

本道题结合三视图,还原直观图,结合直线与平面判定,即可。【详解】结合三视图,还原直观图,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4对。故选C。【点睛】本道题考查了三视图还原直观图,难度中等。6、A【解析】依题意有,故7、D【解析】把此三棱锥嵌入长宽高分别为:的长方体中三棱锥即为所求的三棱锥其中,,,则,故可求得三棱锥各面面积分别为:,,,故表面积为三棱锥体积设内切球半径为,则故三棱锥内切球体积故选8、A【解析】

根据正弦函数的周期性及对称性,逐项判断,即可得到本题答案.【详解】由,得,所以的最小正周期为,即,故①正确;由,令,得的对称轴为,所以是的对称轴,不是的对称轴,故②正确,③不正确;由,令,得的对称中心为,所以不是的对称中心,故④不正确.故选:A【点睛】本题主要考查正弦函数的周期性以及对称性.9、D【解析】

对任意,不等式恒成立,即恒成立,代入计算得到答案.【详解】对任意,不等式恒成立即恒成立故答案为D【点睛】本题考查了不等式恒成立问题,意在考查学生的计算能力和解决问题的能力.10、D【解析】

由题设条件可以得到,从而可判断A,B中的不等式都是正确的,再把题设变形后可得,从而C中的不等式也是成立的,当,D中的不等式不成立,而时,它又是成立的,故可得正确选项.【详解】因为且,故,所以,故A正确;又,故,故B正确;而,故,故C正确;当时,,当时,有,故不一定成立,综上,选D.【点睛】本题考查不等式的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,故用二倍角公式算出,再用余弦定理算得即可.【详解】,又,,又,代入得,所以.故答案为【点睛】本题主要考查二倍角公式与余弦定理,属于基础题型.12、【解析】

根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.13、【解析】

根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。14、4【解析】

利用余弦定理变形可得,从而求得结果.【详解】由余弦定理得:本题正确结果:【点睛】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.15、②③④【解析】

根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.16、【解析】

直接利用向量平行性质得到答案.【详解】,若故答案为【点睛】本题考查了向量平行的性质,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】

(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长;(3)利用垂径公式,明确是的中点,进而得到以线段为直径的圆的方程.【详解】()圆的方程可化为,圆心为,半径为.当直线过圆心,时,,∴直线的方程为,即.()因为直线的倾斜角为且过,所以直线的方程为,即.圆心到直线的距离,∴弦.()由于,而弦心距,∴,∴是的中点.故以线段为直径的圆圆心是,半径为.故以线段为直径的圆的方程为.18、(1)(2)【解析】

(1)由,结合,得到求解.(2)据(1)知.再由余弦定理求得边,再利用求解.【详解】(1)因为,,所以,所以,所以,或(舍去).又因为,所以.(2)由(1)知.由余弦定理得所以,即,所以(舍)或.所以的面积.【点睛】本题主要考查了余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.19、(1);(2)等腰直角三角形.【解析】试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化.首先根据面积公式解出b边,得,再由由余弦定理得:,所以,(2)判断三角形形状,利用边的关系比较直观.因为,所以由余弦定理得:,所以,在中,,所以,所以是等腰直角三角形.解:(1),2分,得3分由余弦定理得:,5分所以6分(2)由余弦定理得:,所以9分在中,,所以11分所以是等腰直角三角形;12分考点:正余弦定理20、(1)证明见解析;(2)(3)【解析】

(1)利用在正方体的几何性质,得到,通过线面垂直和面面垂直的判定定理证明.(2)根据和平面平面,知是在平面上的射影,即为直线与平面所成的角,然后在中求解.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面,面的距离分别为x,y,z,,即长方体体对角线长的平方,当且仅当平面时,最小,然后用等体积法求解.【详解】(1)如图所示:在正方体中且,所以平面,又因为平面,所以平面平面.(2)因为,由(1)知平面平面,所以是在平面上的射影,所以即为直线与平面所成的角,在中,所以.(3)如图所示从向面,面,面引垂线,构成一个长方体,设到面,面,面的距离分别为x,y,z,,即长方体体对角线长的平方,当且仅当平面时,最小,又因为,即,,.【点睛】本题主要考查几何体中线面垂直,面面垂直的判定定理和线面角及距离问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.21、(1),;(2)平均数约为,中位数约为,众数约为75;(3).【解析】

(1)根据题目频率分布直方图频率之和为1,已知其中,可得答案;(2)利用矩形的面积等于频率为0.5可估算中位数所在的区间,利用估算中位数定义,矩形最高组估算纵数可得答案;(3)利用古典概型的概率计算公式求解即可.【详解】解:研究人员随机抽取了1000名市民进行调查,并将满意程度以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论