版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省孝感市七校教学联盟高一数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设是公比为的无穷等比数列,若的前四项之和等于第五项起以后所有项之和,则数列是()A.公比为的等比数列B.公比为的等比数列C.公比为或的等比数列D.公比为或的等比数列2.已知是等差数列的前项和,.若对恒成立,则正整数构成的集合是()A. B. C. D.3.若线性方程组的增广矩阵是5b1102bA.1 B.2 C.3 D.44.某产品的广告费用(单位:万元)与销售额(单位:万元)的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元5.已知圆O1:x2+y2=1与圆O2:(x﹣3)2+(x+4)2=16,则圆O1与圆O2的位置关系为()A.外切 B.内切 C.相交 D.相离6.数列1,,,…,的前n项和为A. B. C. D.7.已知β为锐角,角α的终边过点(3,4),sin(α+β)=,则cosβ=()A. B. C. D.或8.在中,分别为角的对边,若,且,则边=()A. B. C. D.9.根据频数分布表,可以估计在这堆苹果中,质量大于130克的苹果数约占苹果总数的()分组频数13462A. B. C. D.10.在直角中,,线段上有一点,线段上有一点,且,若,则()A.1 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若实数满足,,则__________.12.方程,的解集是__________.13.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是.14.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.15.若复数满足(为虚数单位),则__________.16.已知正数、满足,则的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是圆的直径,垂直圆所在的平面,是圆上任一点.求证:平面⊥平面.18.如图,三棱柱的侧面是边长为的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.19.的内角所对的边分别为,且.(1)求角;(2)若,且的面积为,求的值.20.如图,已知四棱锥,侧面是正三角形,底面为边长2的菱形,,.(1)设平面平面,求证:;(2)求多面体的体积;(3)求二面角的余弦值.21.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据题意可得,带入等比数列前和即可解决。【详解】根据题意,若的前四项之和等于第五项起以后所有项之和,则,又由是公比为的无穷等比数列,则,变形可得,则,数列为的奇数项组成的数列,则数列为公比为的等比数列;故选:B.【点睛】本题主要考查了利用等比数列前项和计算公比,属于基础题。2、A【解析】
先分析出,即得k的值.【详解】因为因为所以.所以,所以正整数构成的集合是.故选A【点睛】本题主要考查等差数列前n项和的最小值的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.3、C【解析】
由题意得5×3421+【详解】由题意得5×3421+解得b1则b2【点睛】本题主要考查了线性方程组的解法,以及增广矩阵的概念,考查运算能力,属于中档题.4、B【解析】
试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元考点:回归方程5、A【解析】
先求出两个圆的圆心和半径,再根据它们的圆心距等于半径之和,可得两圆相外切.【详解】圆的圆心为,半径等于1,圆的圆心为,半径等于4,它们的圆心距等于,等于半径之和,两个圆相外切.故选A.【点睛】判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.6、B【解析】
数列为,则所以前n项和为.故选B7、B【解析】
由题意利用任意角的三角函数的定义求得sinα和cosα,再利用同角三角函数的基本关系求得cos(α+β)的值,再利用两角差的余弦公式求得cosβ=cos[(α+β)﹣α]的值.【详解】β为锐角,角α的终边过点(3,4),∴sinα,cosα,sin(α+β)sinα,∴α+β为钝角,∴cos(α+β),则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα••,故选B.【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题.8、B【解析】
由利用正弦定理化简,再利用余弦定理表示出cosA,整理化简得a2b2+c2,与,联立即可求出b的值.【详解】由sinB=8cosAsinC,利用正弦定理化简得:b=8c•cosA,将cosA代入得:b=8c•,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),则b=1.故选B【点睛】此题考查了正弦、余弦定理,熟练掌握定理,准确计算是解本题的关键,是中档题9、C【解析】
根据频数分布表计算出质量大于130克的苹果的频率,由此得出正确选项.【详解】根据频数分布表可知,所以质量大于克的苹果数约占苹果总数的.故选:C【点睛】本小题主要考查频数分析表的阅读与应用,属于基础题.10、D【解析】
依照题意采用解析法,建系求出目标向量坐标,用数量积的坐标表示即可求出结果.【详解】如图,以A为原点,AC,AB所在直线分别为轴建系,依题设A(0,0),B(0,2),C(3,0),M(1,0),,由得,,解得,,所以,,,故选D.【点睛】本题主要考查解析法在向量中的应用,意在考查学生数形结合的能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由反正弦函数的定义求解.【详解】∵,∴,,∴,∴.故答案为:.【点睛】本题考查反正弦函数,解题时注意反正弦函数的取值范围是,结合诱导公式求解.12、【解析】
用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.13、【解析】
,,是平面内两个相互垂直的单位向量,∴,∴,,,为与的夹角,∵是平面内两个相互垂直的单位向量∴,即,所以当时,即与共线时,取得最大值为,故答案为.14、【解析】
分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.15、【解析】分析:由复数的除法运算可得解.详解:由,得.故答案为:.点睛:本题考查了复数的除法运算,属于基础题.16、【解析】
直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为:【点睛】本题考查了均值不等式,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、证明见解析【解析】
先证直线平面,再证平面⊥平面.【详解】证明:∵是圆的直径,是圆上任一点,,,平面,平面,,又,平面,又平面,平面⊥平面.【点睛】本题考查圆周角及线面垂直判定定理、面面垂直判定定理的应用,考查垂直关系的简单证明.18、(1)见解析(2)【解析】
(1)利用直线与平面垂直的判定,结合三角形全等判定,得到,再次结合三角形全等,即可.(2)法一:建立坐标系,分别计算的法向量,结合两向量夹角为直角,计算出的值,然后结合,即可.法二:设出OA=x,用x分别表示AB,BD,AD,结合,建立方程,计算x,结合,即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以平面,而平面,所以,因为,所以,而,所以,.(2)因为,,所以,(法一)以为坐标原点,所以直线为轴,所以直线为轴,所以直线为轴建立如图所示空间直角坐标系,设,则,,,,,所以,,,设平面的法向量,所以令,则,,取,设平面的法向量,所以令,则,,取,依题意得,解得.所以.(法二)过作,连结,由(1)知,所以且,所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本道题考查了直线与平面垂直判定,考查了利用空间向量解决二面角问题,难度较难.19、(1)(2)【解析】
(1)对等式,运用正弦定理实现边角转化,再利用同角三角函数关系中的商关系,可求出角的正切值,最后根据角的取值范围,求出角;(2)由三角形面积公式,可以求出的值,最后利用余弦定理,求出的值.【详解】(1)∵,∴,∵,∴,∴,∴在中;(2)∵的面积为,∴,∴,由余弦定理,有,∴.【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.20、(1)证明见解析;(2);(3).【解析】
(1)由,证得平面,再由线面平行的性质,即可得到;(2)取中点,连结,推得,,得到平面,再由多面体的体积,结合体积公式,即可求解;(3)由,设的中点为,连结,推得,从而得到就是二面角的平面角,由此可求得二面角的余弦值.【详解】证明:(1)因为平面平面,所以平面,又平面,平面平面,所以;(2)取中点,连结,由得,同理,又因为,所以平面,在中,,所以,所以多面体的体积;(3)由题意知,底面为边长2的菱形,,所以,又,所以,设的中点为,连结,由侧面是正三角形知,,所以,因此就是二面角的平面角,在中,,,由余弦定理得,二面角的余弦值为.【点睛】本题主要考查了线面位置关系的判定,多
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借款利息计算协议书
- 音乐厅装修指南安全生产培训
- 地貌治理工程施工方案
- 体育用品安全生产培训
- 二手房售房合同范本四
- 街道安全生产工作计划2
- 苗圃土地出租合同
- 通信网络安全维护培训
- 医院爱国卫生工作总结3
- 通信工程安全生产培训
- GB/T 42437-2023南红鉴定
- 购房屋贷款合同协议书
- 洛栾高速公路薄壁空心墩施工方案爬模施工
- 事业单位公开招聘工作人员政审表
- GB/T 35199-2017土方机械轮胎式装载机技术条件
- GB/T 28591-2012风力等级
- 思博安根测仪热凝牙胶尖-说明书
- 出院小结模板
- HITACHI (日立)存储操作说明书
- (新版教材)苏教版二年级下册科学全册教案(教学设计)
- 61850基础技术介绍0001
评论
0/150
提交评论