版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省盟校数学高一下期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线y=﹣x+1的倾斜角是()A.30∘ B.45∘ C.1352.若两个球的半径之比为,则这两球的体积之比为()A. B. C. D.3.下列函数中,既是偶函数又在(0,+∞)上是单调递减的是()A.y=-cosx B.y=lgx4.当为第二象限角时,的值是().A. B. C. D.5.如果直线l过点(2,1),且在y轴上的截距的取值范围为(﹣1,2),那么l的斜率k的取值范围是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)6.若且,则()A. B. C. D.7.执行如图所示的程序框图,输出的s值为A. B.C. D.8.等差数列中,已知,且公差,则其前项和取最小值时的的值为()A.6 B.7 C.8 D.99.在等差数列an中,a1+a2A.2n B.2n+1 C.2n-1 D.2n+210.在中,角的对边分别是,若,则()A. B.或 C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是等比数列,,,则公比______.12.已知函数fx=Asin13.正方体中,异面直线和所成角的余弦值是________.14.在中,是斜边的中点,,,平面,且,则_____.15.已知函数,对于上的任意,,有如下条件:①;②;③;④.其中能使恒成立的条件序号是__________.16.在数列中,按此规律,是该数列的第______项三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前n项和为,且,.(1)求;(2)求.18.足球,有“世界第一运动的美誉,是全球体育界最具影响力的单项体育运动之一.足球传球是足球运动技术之一,是比赛中组织进攻、组织战术配合和进行射门的主要手段.足球截球也是足球运动技术的一种,是将对方控制或传出的球占为己有,或破坏对方对球的控制的技术,是比赛中由守转攻的主要手段.这两种运动技术都需要球运动员的正确判断和选择.现有甲、乙两队进行足球友谊赛,A、B两名运动员是甲队队员,C是乙队队员,B在A的正西方向,A和B相距20m,C在A的正北方向,A和C相距14m.现A沿北偏西60°方向水平传球,球速为10m/s,同时B沿北偏西30°方向以10m/s的速度前往接球,C同时也以10m/s的速度前去截球.假设球与B、C都在同一平面运动,且均保持匀速直线运动.(1)若C沿南偏西60°方向前去截球,试判断B能否接到球?请说明理由.(2)若C改变(1)的方向前去截球,试判断C能否球成功?请说明理由.19.已知数列满足且,设,.(1)求;(2)求的通项公式;(3)求.20.中,角的对边分别为,且.(I)求的值;(II)求的值.21.已知圆C:(x-1)2(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由直线方程可得直线的斜率,进而可得倾斜角.【详解】直线y=﹣x+1的斜率为﹣1,设倾斜角为α,则tanα=﹣1,∴α=135°故选:C.【点睛】本题考查直线的倾斜角和斜率的关系,属基础题.2、C【解析】
根据球的体积公式可知两球体积比为,进而得到结果.【详解】由球的体积公式知:两球的体积之比故选:【点睛】本题考查球的体积公式的应用,属于基础题.3、C【解析】
先判断各函数奇偶性,再找单调性符合题意的即可。【详解】首先可以判断选项D,y=e然后,由图像可知,y=-cosx在(0,+∞)上不单调,y=lg只有选项C:y=1-x【点睛】本题主要考查函数的性质,奇偶性和单调性。4、C【解析】
根据为第二象限角,,,去掉绝对值,即可求解.【详解】因为为第二象限角,∴,,∴,故选C.【点睛】本题重点考查三角函数值的符合,三角函数在各个象限内的符号可以结合口诀:一全正,二正弦,三正切,四余弦,增加记忆印象,属于基础题5、A【解析】
利用直线的斜率公式,求出当直线经过点时,直线经过点时的斜率,即可得到结论.【详解】设要求直线的斜率为,当直线经过点时,斜率为,当直线经过点时,斜率为,故所求直线的斜率为.故选:A.【点睛】本题主要考查直线的斜率公式,属于基础题.6、A【解析】
利用同角的三角函数关系求得,再根据正弦的二倍角公式求解即可【详解】由题,因为,,所以或,因为,所以,则,所以,故选:A【点睛】本题考查正弦的二倍角公式的应用,考查同角的三角函数关系的应用,考查已知三角函数值求三角函数值问题7、B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.8、C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C.9、C【解析】
直接利用等差数列公式解方程组得到答案.【详解】aaa1故答案选C【点睛】本题考查了等差数列的通项公式,属于基础题型.10、D【解析】
直接利用正弦定理,即可得到本题答案,记得要检验,大边对大角.【详解】因为,所以,又,所以,.故选:D【点睛】本题主要考查利用正弦定理求角.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等比数列的性质可求.【详解】设等比数列的公比为,则,故.故答案为:【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)(为公比);(3)公比时,则有,其中为常数且;(4)为等比数列()且公比为.12、f【解析】分析:首先根据函数图象得函数的最大值为2,得到A=2,然后算出函数的周期T=π,利用周期的公式,得到ω=2,最后将点(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f详解:根据函数图象得函数的最大值为2,得A=2,又∵函数的周期34T=5π将点(5π12,2)代入,得:2=2sin所以fx的解析式是f点睛:本题给出了函数y=Asin(ωx+φ)的部分图象,要确定其解析式,着重考查了三角函数基本概念和函数y=Asin(ωx+φ)的图象与性质的知识点,属于中档题.13、【解析】
由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.14、【解析】
由EC垂直Rt△ABC的两条直角边,可知EC⊥面ABC,再根据D是斜边AB的中点,AC=6,BC=8,可求得CD的长,根据勾股定理可求得DE的长.【详解】如图,EC⊥面ABC,而CD⊂面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜边AB的中点,∴CD=5,ED1.故答案为1.【点睛】本题主要考查了线面垂直的判定和性质定理,利用勾股定理求线段的长度,考查了空间想象能力和推理论证能力,属于基础题.15、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函数,∴g(x)图象关于y轴对称,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函数,在[﹣,0)是减函数,故③x1>|x2|;④时,g(x1)>g(x2)恒成立,故答案为:③④.点睛:此题考查的是函数的单调性的应用;已知表达式,根据表达式判断函数的单调性,和奇偶性,偶函数在对称区间上的单调性相反,根据单调性的定义可知,增函数自变量越大函数值越大,减函数自变量越大函数值越小。16、【解析】
分别求出,,,结果构成等比数列,进而推断数列是首相为2,公比为2的等比数列,进而求得数列的通项公式,再由求得答案.【详解】,,,依此类推可得,,,即.,解得.故答案为:7.【点睛】本题考查利用数列的递推关系求数列的通项公式,求解的关键在于推断是等比数列,再用累加法求得数列的通项公式,考查逻辑推理能力和运算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由可求得公差,利用等差数列通项公式求得结果;(2)利用等差数列前项和公式可求得结果.【详解】(1)设等差数列公差为,则,解得:(2)由(1)知:【点睛】本题考查等差数列通项公式和前项和的求解问题,考查基础公式的应用,属于基础题.18、(1)能接到;(2)不能接到【解析】
(1)在中由条件可得,,进一步可得为等边三角形,然后计算运动到点所需时间即可判断;(2)建立平面直角坐标系,作于,求出直线的方程,然后计算到直线的距离即可判断.【详解】(1)如图所示,在中,,,,,,由题意可知,如果不运动,经过,可以接到球,在上取点,使得,,为等边三角形,,,队员运动到点要,此时球运动了.所以能接到球.(2)建立如图所示的平面直角坐标系,作于,所以直线的方程为:,经过,运动了.点到直线的距离,所以以为圆心,半径长为的圆与直线相离.故改变(1)的方向前去截球,不能截到球.【点睛】本题主要考查了三角形的实际应用,以及点到直线的距离的应用,考查了推理与运算能力,属中档题.19、(1),,,;(1),;(3).【解析】
(1)依次代入计算,可求得;(1)归纳出,并用数学归纳法证明;(3)用裂项相消法求和,然后求极限.【详解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)归纳:,下面用数学归纳法证明:1°n=1,n=1时,由(1)知成立,1°假设n=k(k>1)时,结论成立,即bk=1k1,则n=k+1时,ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1时结论成立,∴对所有正整数n,bn=1n1.(3)由(1)知n1时,,∴,.【点睛】本题考查用归纳法求数列的通项公式,考查用裂项相消法求数列的和,考查数列的极限.在求数列通项公式时,可以根据已知的递推关系求出数列的前几项,然后归纳出通项公式,并用数学归纳法证明,这对学生的归纳推理能力有一定的要求,这也就是我们平常所学的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年矿用皮带机综合保护监控装置项目可行性研究报告
- 《金融市场par》课件
- 二年级数学计算题专项练习集锦
- 四年级数学(除数是两位数)计算题专项练习及答案
- 二年级数学计算题专项练习1000题汇编
- 酒店预订居间服务合同
- 瑜伽馆装修合同范本协议书
- 《体育测量与评价》课件
- 幼儿园家长参与党建活动方案
- 航空运输安全管理计划与设备保障
- 品牌策划与推广-项目5-品牌推广课件
- 信息学奥赛-计算机基础知识(完整版)资料
- 发烟硫酸(CAS:8014-95-7)理化性质及危险特性表
- 数字信号处理(课件)
- 公路自然灾害防治对策课件
- 信息简报通用模板
- 社会组织管理概论全套ppt课件(完整版)
- 火灾报警应急处置程序流程图
- 耳鸣中医临床路径
- 安徽身份证号码前6位
- 分子生物学在动物遗传育种方面的应用
评论
0/150
提交评论