广东省广州市顺德区广州第一中学2025届高一数学第二学期期末考试模拟试题含解析_第1页
广东省广州市顺德区广州第一中学2025届高一数学第二学期期末考试模拟试题含解析_第2页
广东省广州市顺德区广州第一中学2025届高一数学第二学期期末考试模拟试题含解析_第3页
广东省广州市顺德区广州第一中学2025届高一数学第二学期期末考试模拟试题含解析_第4页
广东省广州市顺德区广州第一中学2025届高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省广州市顺德区广州第一中学2025届高一数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线在轴上的截距为()A.2 B.﹣3 C.﹣2 D.32.已知为角终边上一点,且,则()A. B. C. D.3.平面与平面平行的充分条件可以是()A.内有无穷多条直线都与平行B.直线,,且直线a不在内,也不在内C.直线,直线,且,D.内的任何一条直线都与平行4.若则一定有()A. B. C. D.5.与圆关于直线对称的圆的方程为()A. B.C. D.6.若双曲线的中心为原点,是双曲线的焦点,过的直线与双曲线相交于,两点,且的中点为,则双曲线的方程为()A. B. C. D.7.若实数a>b,则下列结论成立的是()A.a2>b2 B. C.ln2a>ln2b D.ax2>bx28.数列的通项,其前项和为,则为()A. B. C. D.9.函数的零点所在的区间是().A. B. C. D.10.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某班级有50名学生,现用系统抽样的方法从这50名学生中抽出10名学生,将这50名学生随机编号为1~5号,并按编号顺序平均分成10组(1~5号,12.设是等差数列的前项和,若,则________13.已知,则___________.14._____________.15.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.16.已知,为锐角,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.18.在中,角所对的边分别为,已知,.(1)求的值;(2)若,求周长的取值范围.19.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩(满分100分,且抽取的学生成绩都在内),按成绩分为,,,,五组,得到如图所示的频率分布直方图.(1)用分层抽样的方法从月考成绩在内的学生中抽取6人,求分别抽取月考成绩在和内的学生多少人;(2)在(1)的前提下,从这6名学生中随机抽取2名学生进行调查,求月考成绩在内至少有1名学生被抽到的概率.20.已知内角的对边分别是,若,,.(1)求;(2)求的面积.21.已知向量,,函数.(1)若且,求;(2)求函数的最小正周期T及单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

令,求出值则是截距。【详解】直线方程化为斜截式为:,时,,所以,在轴上的截距为-3。【点睛】轴上的截距:即令,求出值;同理轴上的截距:即令,求出值2、B【解析】

由可得,借助三角函数定义可得m值与.【详解】∵∴,解得又为角终边上一点,∴,∴∴故选B【点睛】本题主要考查任意角的三角函数的定义,两角和正切公式,属于基础题.3、D【解析】

利用平面与平面平行的判定定理一一进行判断,可得正确答案.【详解】解:A选项,内有无穷多条直线都与平行,并不能保证平面内有两条相交直线与平面平行,这无穷多条直线可以是一组平行线,故A错误;B选项,直线,,且直线a不在内,也不在内,直线a可以是平行平面与平面的相交直线,故不能保证平面与平面平行,故B错误;C选项,直线,直线,且,,当直线,同样不能保证平面与平面平行,故C错误;D选项,内的任何一条直线都与平行,则内至少有两条相交直线与平面平行,故平面与平面平行;故选:D.【点睛】本题主要考查平面与平面平行的判断,解题时要认真审题,熟练掌握面与平面平行的判定定理,注意空间思维能力的培养.4、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选5、A【解析】

设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆的方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】由题可知,直线:,设,,得,又,解得,所以双曲线方程为,故选B。7、C【解析】

特值法排除A,B,D,单调性判断C【详解】由题意,可知:对于A:当a、b都是负数时,很明显a2<b2,故选项A不正确;对于B:当a为正数,b为负数时,则有,故选项B不正确;对于C:∵a>b,∴2a>2b>0,∴ln2a>ln2b,故选项C正确;对于D:当x=0时,结果不成立,故选项D不正确;故选:C.【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.8、A【解析】分析:利用二倍角的余弦公式化简得,根据周期公式求出周期为,从而可得结果.详解:首先对进行化简得,又由关于的取值表:123456可得的周期为,则可得,设,则,故选A.点睛:本题考查二倍角的余弦公式、三角函数的周期性以及等差数列的求和公式,意在考查灵活运用所学知识解决问题的能力以及计算能力,求求解过程要细心,注意避免计算错误.9、C【解析】

因为原函数是增函数且连续,,所以根据函数零点存在定理得到零点在区间上,故选C.10、B【解析】

根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.

如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,

而当时,Q在圆上任意移动,存在恒成立.

因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,

点在直线上,,即

,

,

计算得出,,

的取值范围是,

故选B.考点:正弦定理、直线与圆的位置关系.二、填空题:本大题共6小题,每小题5分,共30分。11、33【解析】试题分析:因为是从50名学生中抽出10名学生,组距是5,∵第三组抽取的是13号,∴第七组抽取的为13+4×5=33.考点:系统抽样12、5【解析】

由等差数列的前和公式,求得,再结合等差数列的性质,即可求解.【详解】由题意,根据等差数列的前和公式,可得,解得,又由等差数列的性质,可得.故答案为:.【点睛】本题主要考查了等差数列的性质,以及等差数列的前和公式的应用,其中解答中熟记等差数列的性质,以及合理应用等差数列的前和公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.13、;【解析】

把已知式平方可求得,从而得,再由平方关系可求得.【详解】∵,∴,即,∴,即,∴.故答案为.【点睛】本题考查同角三角函数关系,考查正弦的二倍角公式,在用平方关系求值时要注意结果可能有正负,因此要判断是否只取一个值.14、【解析】,故填.15、【解析】

将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【点睛】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.16、【解析】

由题意求得,再利用两角和的正切公式求得的值,可得的值.【详解】,为锐角,且,即,.再结合,则,故答案为.【点睛】本题主要考查两角和的正切公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】

(1)先求出周期得,由最高点坐标可求得,然后由正弦函数的单调性得结论;(2)由直线与的图象交点的对称性可得.【详解】(1)由题意,∴,又,,,由得,∴,令得,∴单调减区间是,;(2)在含有三个周期,如图,的图象与在上有六个交点,前面两个交点关于直线对称,中间两个关于直线对称,最后两个关于直线对称,∴所求六个根的和为.【点睛】本题考查由三角函数的性质求解析式,考查函数的单调性,考查函数零点与方程根的分布问题.函数零点与方程根的分布问题可用数形结合思想,把方程的根转化为函数图象与直线交点的横坐标,再利用对称性求解.18、(1)3;(2).【解析】

(1)先用二倍角公式化简,再根据正弦定理即可解出;(2)用正弦定理分别表示,再用三角形内角和及和差公式化简,转化为三角函数求最值.【详解】(1)由及二倍角公式得,又即,所以;(2)由正弦定理得,周长:,又因为,所以.因此周长的取值范围是.【点睛】本题考查了正余弦定理解三角形,三角形求边长取值范围常用的方法:1、转化为三角函数求最值;2、基本不等式.19、(1)有4人,有2人;(2)【解析】

(1)由频率分布直方图,求出成绩在和内的频率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出从这6名学生中随机抽取2名学生的所有不同取法,再求出被抽到的学生至少有1名月考成绩在内的不同取法,再求解即可.【详解】解:(1)因为,所以,则月考成绩在内的学生有人;月考成绩在内的学生有人,则成绩在和内的频率的比值为,故用分层抽样的方法从月考成绩在内的学生中抽取4人,从月考成绩在内的学生中抽取2人.(2)由(1)可知,被抽取的6人中有4人的月考成绩在内,分别记为,,,;有2人的月考成绩在内,分别记为,.则从这6名学生中随机抽取2名学生的情况为,,,,,,,,,,,,,,,共15种;被抽到的学生至少有1名月考成绩在内的情况为,,,,,,,,,共9种.故月考成绩内至少有1名学生被抽到的概率为.【点睛】本题考查了分层抽样,重点考查了古典概型概率的求法,属中档题.20、(1);(2).【解析】

(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面积公式,即可求解三角形的面积.【详解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合题意,舍去,(2)由(1)知,所以,所以的面积为.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论