甘肃省临泽一中2025届数学高一下期末达标检测模拟试题含解析_第1页
甘肃省临泽一中2025届数学高一下期末达标检测模拟试题含解析_第2页
甘肃省临泽一中2025届数学高一下期末达标检测模拟试题含解析_第3页
甘肃省临泽一中2025届数学高一下期末达标检测模拟试题含解析_第4页
甘肃省临泽一中2025届数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省临泽一中2025届数学高一下期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的定义域为,若对于,,,,,分别为某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是()A.; B.;C.; D.2.在等差数列中,若公差,则()A. B. C. D.3.已知集合,,,则()A. B. C. D.4.圆锥的母线长为,侧面展开图为一个半圆,则该圆锥表面积为()A. B. C. D.5.已知是的共轭复数,若复数,则在复平面内对应的点是()A. B. C. D.6.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng)是底面为矩形,顶部只有一条棱的五面体.如图,五面体是一个刍甍.四边形为矩形,与都是等边三角形,,,则此“刍甍”的表面积为()A. B. C. D.7.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.8.已知向量,且,则的值是()A. B. C.3 D.9.直线的倾斜角为A. B. C. D.10.在一段时间内,某种商品的价格(元)和销售量(件)之间的一组数据如下表:价格(元)4681012销售量(件)358910若与呈线性相关关系,且解得回归直线的斜率,则的值为()A.0.2 B.-0.7 C.-0.2 D.0.7二、填空题:本大题共6小题,每小题5分,共30分。11.___________.12.公比为2的等比数列的各项都是正数,且,则的值为___________13.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.14.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.15.函数的单调增区间是________.16.已知等比数列中,,,若数列满足,则数列的前项和=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了对某课题进行研究,用分层抽样方法从三所高校,,的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).高校相关人员抽取人数A18B362C54(1)求,;(2)若从高校,抽取的人中选2人做专题发言,求这2人都来自高校的概率.18.已知.(1)求不等式的解集;(2)若关于的不等式能成立,求实数的取值范围.19.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示“甲在号车站下车,乙在号车站下车”(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(Ⅱ)求甲、乙两人同在第3号车站下车的概率;(Ⅲ)求甲、乙两人在不同的车站下车的概率.20.如图,在三棱锥中,底面ABC,D是PC的中点,已知,,,,求:(1)三棱锥的体积;(2)异面直线BC与AD所成的角的余弦值大小.21.如图,中,,角的平分线长为1.(1)求;(2)求边的长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由三角形的三边关系,可得“三角形函数”的最大值小于最小值的二倍,因为单调递增,无最大值和最小值,故排除A,,符合“三角形函数”的条件,即B正确,单调递增,最大值为4,最小值为1,故排除C,单调递增,最小值为1,最大值为,故排除D.故选B.点睛:本题以新定义为载体考查函数的单调性和最值;解决本题的关键在于正确理解“三角形函数”的含义,正确将问题转化为“判定函数的最大值和最小值间的关系”进行处理,充分体现转化思想的应用.2、B【解析】

根据等差数列的通项公式求解即可得到结果.【详解】∵等差数列中,,公差,∴.故选B.【点睛】等差数列中的计算问题都可转为基本量(首项和公差)来处理,运用公式时要注意项和项数的对应关系.本题也可求出等差数列的通项公式后再求出的值,属于简单题.3、C【解析】由题意得,因为,所以,所以,故,故选C.4、B【解析】

由圆锥展开图为半径为的半圆,得出其弧长等于圆锥的底面圆周长,可得出圆锥底面圆的半径,然后利用圆锥的表面积公式可计算出圆锥的表面积.【详解】一个圆锥的母线长为,它的侧面展开图为半圆,半圆的弧长为,即圆锥的底面周长为,设圆锥的底面半径是,则得到,解得,这个圆锥的底面半径是,圆锥的表面积为.故选:B.【点睛】本题考查圆锥表面积的计算,计算时要结合已知条件列等式计算出圆锥的相关几何量,考查运算求解能力,属于中等题.5、A【解析】由,得,所以在复平面内对应的点为,故选A.6、A【解析】

分别计算出每个面积,相加得到答案.【详解】故答案选A【点睛】本题考查了图像的表面积,意在考查学生的计算能力.7、C【解析】

由题,连接,设其交平面于点易知平面,即(或其补角)为与平面所成的角,再利用等体积法求得AO的长度,即可求得的长度,可得结果.【详解】设正方体的边长为1,如图,连接,设其交平面于点,则易知,,又,所以平面,即得平面.在三棱锥中,由等体积法知,,即,解得,所以.连接,则(或其补角)为与平面所成的角.在中,.故选C.【点睛】本题考查了立体几何中线面角的求法,作出线面角是解题的关键,求高的长度会用到等体积法,属于中档题.8、A【解析】

由已知求得,然后展开两角差的正切求解.【详解】解:由,且,得,即.,故选A.【点睛】本题考查数量积的坐标运算,考查两角差的正切,是基础题.9、D【解析】

求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.10、C【解析】

由题意利用线性回归方程的性质计算可得的值.【详解】由于,,由于线性回归方程过样本中心点,故:,据此可得:.故选C.【点睛】本题主要考查线性回归方程的性质及其应用,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先将写成的形式,再根据诱导公式进行求解.【详解】由题意得:.故答案为:.【点睛】考查三角函数的诱导公式.,,,,.12、2【解析】

根据等比数列的性质与基本量法求解即可.【详解】由题,因为,又等比数列的各项都是正数,故.故.故答案为:【点睛】本题主要考查了等比数列的等积性与各项之间的关系.属于基础题.13、.【解析】

由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为,所以该组数据的方差是.【点睛】本题主要考查方差的计算公式,属于基础题.14、.【解析】试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.15、,【解析】

先利用诱导公式化简,即可由正弦函数的单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。16、【解析】试题分析:根据题意,由于等比数列中,,,则可知公比为,那么可知等比数列中,,,故可知,那么可知数列的前项和=1=,故可知答案为.考点:等比数列点评:主要是考查了等比数列的通项公式以及数列的求和的运用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)根据分层抽样的概念,可得,求解即可;(2)分别记从高校抽取的2人为,,从高校抽取的3人为,,,先列出从5人中选2人作专题发言的基本事件,再列出2人都来自高校的基本事件,进而求出概率【详解】(1)由题意可得,所以,(2)记从高校抽取的2人为,,从高校抽取的3人为,,,则从高校,抽取的5人中选2人作专题发言的基本事件有,,,,,,,,,共10种设选中的2人都来自高校的事件为,则包含的基本事件有,,共3种因此,故选中的2人都来自高校的概率为【点睛】本题考查分层抽样,考查古典概型,属于基础题18、(1)(1)或.【解析】

(1)运用绝对值的意义,去绝对值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等价为|x+l|﹣|x﹣m|的最大值,由绝对值不等式的性质,以及绝对值不等式的解法,可得所求范围.【详解】解:(1)由题意可得|x﹣1|+|1x+3|>4,当x≥1时,x﹣1+1x+3>4,解得x≥1;当x<1时,1﹣x+1x+3>4,解得0<x<1;当x时,1﹣x﹣1x﹣3>4,解得x<﹣1.可得原不等式的解集为(﹣∞,﹣1)∪(0,+∞);(1)由(1)可得|t﹣1|+|1t+3|,可得t时,|t﹣1|+|1t+3|取得最小值,关于x的不等式|x+l|﹣|x﹣m|≥|t﹣1|+|1t+3|(t∈R)能成立,等价为|x+l|﹣|x﹣m|的最大值,由|x+l|﹣|x﹣m|≤|m+1|,可得|m+1|,解得m或m.【点睛】本题考查绝对值不等式的解法和绝对值不等式的性质的运用,求最值,考查化简变形能力,以及运算能力,属于基础题.19、(Ⅰ)(2,2)、(2,3)、(2,4)、(3,2)、(3,3)、(3,4)、(4,2)、(4,3)、(4,4)(Ⅱ)(Ⅲ)【解析】(Ⅰ)甲、乙两人下车的所有可能的结果为(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)(Ⅱ)设甲、乙两人同在第3号车站下车的的事件为A,则(Ⅲ)设甲、乙两人在不同的车站下车的事件为B,则20、(1),(2)【解析】

(1)先求出,然后由底面ABC得,即可算出答案(2)取的中点,可得是异面直线BC与AD所成的角(或其补角),然后在中,用余弦定理即可算出【详解】(1)因为,,所以因为底面ABC,所以(2)如图,取的中点,连接,则所以是异面直线BC与AD所成的角(或其补角)在中,所以由余弦定理得所以异面直线BC与AD所成的角的余弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论