版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届西藏拉萨市数学高一下期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线在轴上的截距为,在轴上的截距为,则()A. B. C. D.2.盒中装有除颜色以外,形状大小完全相同的3个红球、2个白球、1个黑球,从中任取2个球,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球 B.至少有一个白球;红、黑球各一个C.恰有一个白球:一个白球一个黑球 D.至少有一个白球;都是白球3.在区间上随机选取一个实数,则事件“”发生的概率是()A. B. C. D.4.平面平面,直线,,那么直线与直线的位置关系一定是()A.平行 B.异面 C.垂直 D.不相交5.直线倾斜角的范围是()A.(0,] B.[0,] C.[0,π) D.[0,π]6.设为直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.函数的图像关于直线对称,则的最小值为()A. B. C. D.18.已知等差数列an的前n项和为Sn,若a8=12,S8A.-2 B.2 C.-1 D.19.已知是定义在上的奇函数,且当时,,那么()A. B. C. D.10.已知函数,在下列函数图像中,不是函数的图像的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若是方程的解,其中,则______.12.在等差数列中,,,则的值为_______.13.函数在的递减区间是__________14.数列满足,设为数列的前项和,则__________.15.已知,,则________.16.若关于的不等式有解,则实数的取值范围为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.18.已知圆过点,且与圆关于直线:对称.(1)求圆的标准方程;(2)设为圆上的一个动点,求的最小值.19.设数列满足,;数列的前项和为,且(1)求数列和的通项公式;(2)若,求数列的前项和.20.已知数列满足:,,.(1)求证:数列为等差数列,并求出数列的通项公式;(2)记(),用数学归纳法证明:,21.某学校为了了解高三文科学生第一学期数学的复习效果.从高三第一学期期末考试成绩中随机抽取50名文科考生的数学成绩,分成6组制成如图所示的频率分布直方图.(1)试利用此频率分布直方图求的值及这50名同学数学成绩的平均数的估计值;(2)该学校为制定下阶段的复习计划,从被抽取的成绩在的同学中选出3位作为代表进行座谈,若已知被抽取的成绩在的同学中男女比例为,求至少有一名女生参加座谈的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
令求,利用求.【详解】令,由得:,所以令,由得:,所以,故选B.【点睛】本题考查了直线的截距问题,直线方程,令解出,得到直线的纵截距.令解出,得到直线的横截距.2、B【解析】
根据对立事件和互斥事件的定义,对每个选项进行逐一分析即可.【详解】从6个小球中任取2个小球,共有15个基本事件,因为存在事件:取出的两个球为1个白球和1个红球,故至少有一个白球;至少有一个红球,这两个事件不互斥,故A错误;因为存在事件:取出的两个球为1个白球和1个黑球,故恰有一个白球:一个白球一个黑球,这两个事件不互斥,故C错误;因为存在事件:取出的两个球都是白球,故至少有一个白球;都是白球,这两个事件不互斥,故D错误;因为至少有一个白球,包括:1个白球和1个红球,1个白球和1个黑球,2个白球这3个基本事件;红、黑球各一个只包括1个红球1个白球这1个基本事件,故两个事件互斥,因还有其它基本事件未包括,故不对立.故B正确.故选:B.【点睛】本题考查互斥事件和对立事件的辨析,属基础题.3、B【解析】
根据求出的范围,再由区间长度比即可得出结果.【详解】区间的长度为;由,解得,即,区间长度为,事件“”发生的概率是.故选B.【点睛】本题主要考查与长度有关的几何概型,熟记概率计算公式即可,属于基础题型.4、D【解析】
利用空间中线线、线面、面面的位置关系得出直线与直线没有公共点.【详解】由题平面平面,直线,则直线与直线的位置关系平行或异面,即两直线没有公共点,不相交.故选D.【点睛】本题考查空间中两条直线的位置关系,属于简单题.5、C【解析】试题分析:根据直线倾斜角的定义判断即可.解:直线倾斜角的范围是:[0,π),故选C.6、B【解析】A中,也可能相交;B中,垂直与同一条直线的两个平面平行,故正确;C中,也可能相交;D中,也可能在平面内.【考点定位】点线面的位置关系7、C【解析】
的对称轴为,化简得到得到答案.【详解】对称轴为:当时,有最小值为故答案选C【点睛】本题考查了三角函数的对称轴,将对称轴表示出来是解题的关键,意在考查学生对于三角函数性质的灵活运用.8、B【解析】
直角利用待定系数法可得答案.【详解】因为S8=8a1+a82【点睛】本题主要考查等差数列的基本量的相关计算,难度不大.9、C【解析】试题分析:由题意得,,故,故选C.考点:分段函数的应用.10、C【解析】
根据幂函数图像不过第四象限选出选项.【详解】函数为幂函数,图像不过第四象限,所以C中函数图像不是函数的图像.故选:C.【点睛】本小题主要考查幂函数图像不过第四象限,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
把代入方程2cos(x+α)=1,化简根据α∈(0,2π),确定函数值的范围,求出α即可.【详解】∵是方程2cos(x+α)=1的解,∴2cos(+α)=1,即cos(+α)=.又α∈(0,2π),∴+α∈(,).∴+α=.∴α=.故答案为【点睛】本题考查三角函数值的符号,三角函数的定义域,考查逻辑思维能力,属于基础题.12、.【解析】
设等差数列的公差为,根据题中条件建立、的方程组,求出、的值,即可求出的值.【详解】设等差数列的公差为,所以,解得,因此,,故答案为:.【点睛】本题考查等差数列的项的计算,常利用首项和公差建立方程组,结合通项公式以及求和公式进行计算,考查方程思想,属于基础题.13、【解析】
利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.14、【解析】
先利用裂项求和法将数列的通项化简,并求出,由此可得出的值.【详解】,.,因此,,故答案为:.【点睛】本题考查裂项法求和,要理解裂项求和法对数列通项结构的要求,并熟悉裂项法求和的基本步骤,考查计算能力,属于中等题.15、【解析】
由二倍角求得α,则tanα可求.【详解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,则,即.∴.故答案为:.【点睛】本题考查三角函数的恒等变换及化简求值,考查公式的灵活应用,属于基础题.16、【解析】
利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2);(3).【解析】
(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【详解】(1)由题得,所以函数的最小正周期为.(2)令,所以,所以函数的单调增区间为.(3),所以函数的值域为.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1);(2).【解析】
试题分析:(1)两个圆关于直线对称,那么就是半径相等,圆心关于直线对称,利用斜率相乘等于和中点在直线上建立方程,解方程组求出圆心坐标,同时求得圆的半径,由此求得圆的标准方程;(2)设,则,代入化简得,利用三角换元,设,所以.试题解析:(1)设圆心,则,解得,则圆的方程为,将点的坐标代入得,故圆的方程为.(2)设,则,且,令,∴,故的最小值为-1.考点:直线与圆的位置关系,向量.19、(1),;(2)【解析】
(1)分别利用累加法、数列的递推公式得到数列和数列的通项公式.(2)利用数列求和的错位相减即可得到数列的前项和.【详解】(1),……,,以上个式子相加得:当时,=当时,,符合上式,(2)①②①-②得【点睛】已知求数列的通项公式时,可采用累加法得到通项公式,通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)的前项和采用错位相减法.20、(1)证明见解析,;(2)见解析【解析】
(1)定义法证明:;(2)采用数学归纳法直接证明(注意步骤).【详解】由可知:,则有,即,所以为等差数列,且首相为,公差,所以,故;(2),当时,成立;假设当时,不等式成立则:;当时,,因为,所以,则,故时不等式成立,综上可知:.【点睛】数学归纳法的一般步骤:(1)命题成立;(2)假设命题成立;(3)证明命题成立(一定要借助假设,否则不能称之为数学归纳法).21、(1);平均数的估计值(2)【解析】
(1)根据各小矩形面积和为1可求得的值;由频率分布直方图,结合平均数的求法即可求解.(2)根据频率分布直方图先求得成绩在的同学人数,结合分层抽样可得男生4人,女生2人,设男生分别为;女生分别为,利用列举法可得抽取3人的所有情况,进而得至少有一名女生的情况,即可由古典概型概率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国北斗应急预警通信行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国电气化铁路接触网行业资本规划与股权融资战略制定与实施研究报告
- 2025-2030年中国消费性服务行业营销创新战略制定与实施研究报告
- 2025-2030年中国工艺品行业并购重组扩张战略制定与实施研究报告
- 自动售卖机创业计划书
- 建设生态文明-推进科学发展
- 新员工入职培训课件12
- 2024年幼儿园成长手册寄语
- 狗狗护主知识培训课件
- 2025年中国头孢拉定行业发展监测及投资战略研究报告
- 健康体检授权委托书
- 肝脏肿瘤护理查房
- 人工智能 法规
- 琴房租赁合同
- 中国石油青海油田公司员工压力状况调查及员工帮助计划(EAP)实探的开题报告
- 闸门与启闭机相关知识培训讲解
- 中医护理技术之耳针法课件
- 人工开挖土方施工方案
- 佛山市顺德区2023-2024学年四上数学期末质量检测模拟试题含答案
- 环境毒理学(全套课件499P)
- 耳部铜砭刮痧技术评分标准
评论
0/150
提交评论