版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市交大附中嘉定高一下数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的定义域为,若对于,,,,,分别为某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是()A.; B.;C.; D.2.若变量满足约束条件,则的最大值是()A.0 B.2 C.5 D.63.祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的.祖暅原理的内容是:“幂势既同,则积不容异”,“势”即是高,“幂”是面积.意思是,如果夹在两平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都是h),其中:三棱锥的体积为V,四棱锥的底面是边长为a的正方形,圆锥的底面半径为r,现用平行于这两个平面的平面去截三个几何体,如果得到的三个截面面积总相等,那么,下面关系式正确的是()A.,, B.,,C.,, D.,,4.已知在中,内角的对边分别为,若,则等于()A. B. C. D.5.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有的点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度6.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.据上述信息,下列结论中正确的是()A.2015年第三季度环比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度环比有所提高7.圆的半径为()A.1 B.2 C.3 D.48.将的图象向左平移个单位长度,再向下平移个单位长度得到的图象,若,则()A. B. C. D.9.在等差数列中,若,则的值为()A.15 B.21 C.24 D.1810.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称.若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列、、、满足,,,则的取值范围为__________.12.已知cosθ,θ∈(π,2π),则sinθ=_____,tan_____.13.已知等比数列的前项和为,,则的值是__________.14.无限循环小数化成最简分数为________15.不等式有解,则实数的取值范围是______.16.在平面直角坐标系中,点,,若直线上存在点使得,则实数的取值范围是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设二次函数.(1)若对任意实数,恒成立,求实数x的取值范围;(2)若存在,使得成立,求实数m的取值范围.18.已知数列前n项和满足(1)求数列的通项公式;(2)求数列的前n项和.19.已知,为两非零有理数列(即对任意的,,均为有理数),为一个无理数列(即对任意的,为无理数).(1)已知,并且对任意的恒成立,试求的通项公式;(2)若为有理数列,试证明:对任意的,恒成立的充要条件为;(3)已知,,试计算.20.在中,A,B,C所对的边分别为,满足.(I)求角A的大小;(Ⅱ)若,D为BC的中点,且的值.21.设数列的前项和为,满足,且,数列满足,对任意的,且成等比数列,其中.(1)求数列的通项公式(2)记,证明:当且时,
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由三角形的三边关系,可得“三角形函数”的最大值小于最小值的二倍,因为单调递增,无最大值和最小值,故排除A,,符合“三角形函数”的条件,即B正确,单调递增,最大值为4,最小值为1,故排除C,单调递增,最小值为1,最大值为,故排除D.故选B.点睛:本题以新定义为载体考查函数的单调性和最值;解决本题的关键在于正确理解“三角形函数”的含义,正确将问题转化为“判定函数的最大值和最小值间的关系”进行处理,充分体现转化思想的应用.2、C【解析】
由题意作出不等式组所表示的平面区域,将化为,相当于直线的纵截距,由几何意义可得结果.【详解】由题意作出其平面区域,令,化为,相当于直线的纵截距,由图可知,,解得,,则的最大值是,故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3、D【解析】
由祖暅原理可知:三个几何体的体积相等,根据椎体体积公式即可求解.【详解】由祖暅原理可知:三个几何体的体积相等,则,解得,由,解得,所以.故选:D【点睛】本题考查了椎体的体积公式,需熟记公式,属于基础题.4、A【解析】
由题意变形,运用余弦定理,可得cosB,再由同角的平方关系,可得所求值.【详解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,则cosB,可得B<π,即有sinB.故选A.【点睛】本题考查余弦定理的运用,考查同角的平方关系,以及运算能力,属于中档题.5、D【解析】
由图象求得函数解析式的参数,再利用诱导公式将异名函数化为同名函数根据图象间平移方法求解.【详解】由图象可知,又,所以,又因为,所以,所以,又因为,又,所以所以又因为故选D.【点睛】本题考查由图象确定函数的解析式和正弦函数和余弦函数图象之间的平移,关键在于将异名函数化为同名函数,属于中档题.6、C【解析】
根据同比和环比的定义比较两期数据得出结论.【详解】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选C.【点睛】本题考查了新定义的理解,图表认知,考查分析问题解决问题的能力,属于基础题.7、A【解析】
将圆的一般方程化为标准方程,确定所求.【详解】因为圆,所以,所以,故选A.【点睛】本题考查圆的标准方程与一般方程互化,圆的标准方程通过展开化为一般方程,圆的一般方程通过配方化为标准方程,属于简单题.8、D【解析】因为,所以,因此,选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.9、D【解析】
利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。10、D【解析】
由题意得到,再由两角差的余弦及同角三角函数的基本关系式化简求解.【详解】解:∵角与角均以Ox为始边,它们的终边关于y轴对称,
∴,
,
故选:D.【点睛】本题考查了两角差的余弦公式的应用,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.12、﹣2.【解析】
由题意利用同角三角函数的基本关系,二倍角公式,求得式子的值.【详解】由,,知,则,.故答案为:,.【点睛】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.13、1【解析】
根据等比数列前项和公式,由可得,通过化简可得,代入的值即可得结果.【详解】∵,∴,显然,∴,∴,∴,∴,故答案为1.【点睛】本题主要考查等比数列的前项和公式,本题解题的关键是看出数列的公比的值,属于基础题.14、【解析】
利用无穷等比数列求和的方法即可.【详解】.故答案为:【点睛】本题主要考查了无穷等比数列的求和问题,属于基础题型.15、【解析】
由参变量分离法可得知,由二倍角的余弦公式以及二次函数的基本性质求出函数的最小值,即可得出实数的取值范围.【详解】不等式有解,等价于存在实数,使得关于的不等式成立,故只需.令,,由二次函数的基本性质可知,当时,该函数取得最小值,即,.因此,实数的取值范围是.故答案为:.【点睛】本题考查不等式有解的问题,涉及二倍角余弦公式以及二次函数基本性质的应用,一般转化为函数的最值来求解,考查计算能力,属于中等题.16、.【解析】
设由,求出点轨迹方程,可判断其轨迹为圆,点又在直线,转化为直线与圆有公共点,只需圆心到直线的距离小于半径,得到关于的不等式,求解,即可得出结论.【详解】设,,,,整理得,又点在直线,直线与圆共公共点,圆心到直线的距离,即.故答案为:.【点睛】本题考查求曲线的轨迹方程,考查直线与圆的位置关系,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)是关于m的一次函数,计算得到答案.(2)易知,讨论和两种情况计算得到答案.【详解】(1)对任意实数,恒成立,即对任意实数恒成立,是关于m的一次函数,,解得或,所以实数x的取值范围是.(2)存在,使得成立,即,显然.(i)当时,要使成立,即需成立,即需成立.,(当且仅当时等号成立),,.(ii)当时,要使成立,即需成立,即需成立,,(当且仅当时等号成立),.综上得实数m的取值范围是.【点睛】本题考查了恒成立问题和存在性问题,意在考查学生的综合应用能力.18、(1)(2)【解析】
(1)利用当时,,当时,即可求解(2)由裂项相消求解即可【详解】(1)当时,,当时,.所以可得.(2)由题意知,可设则.【点睛】本题考查数列通项公式的求解,考查裂项相消求和,注意相消时提出系数和剩余项数,是中档题19、(1);(2)证明见解析;(3).【解析】
(1)根据不等式可得,把代入即可解出(2)根据化简,利用为有理数即可解决(3)根据题意可知,本题需分为奇数和偶数时讨论,通过求出.【详解】(1)∵,∴,即,∴,∵,∴,∴.(2)∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,以上每一步可逆.(3),∴.∵,∴,当时,∴当时,∴,∴为有理数列,∵,∴,∴,∵,,为有理数列,为无理数列,∴,∴,∴当时,∴当时,∴,∴.【点睛】本题数列的分类问题,数列通项式的求法、有关数列的综合问题等.本题难度、计算量较大,属于难题.20、(I);(II).【解析】
(I)得,求出.(Ⅱ)由题意可知,化简得,再结合余弦定理求出,再利用正弦定理求出的值.【详解】(I),所以,所以因为,所以,所以(Ⅱ)由题意可知:所以所以又因为,所以,因为,所以由正弦定理可得,所以【点睛】本题主要考查三角恒等变换,考查正弦定理余弦定理解三角形,意在考查学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级下英语5单元课件教学课件教学
- 2024版瑜伽国际研讨会组织承办合同3篇
- 部编版四年级语文上册口语交际《讲历史人物故事》精美课件
- 《财政支出的概述》课件
- 智能制造生产线技术及应用 课件 项目四-1 工业机器人产线集成概述
- 物流管理基础课件 情景2子情境6 信息处理
- 教科版小学综合实践6下(教案+课件)27 第三课时《饮料与健康》方案指导课教学设计
- 牙龈瘤病因介绍
- 《催化剂比表面积》课件
- 《全国高校媒体》课件
- 跨文化交际之中英禁忌语比较
- 员工质量意识培训
- 私法英语表达智慧树知到答案章节测试2023年吉林大学
- 药物化学案例分析-
- 指数函数的概念教案【高中数学人教A版】
- GB/T 18029.2-2022轮椅车第2部分:电动轮椅车动态稳定性的测定
- SB/T 10408-2013中央储备肉冻肉储存冷库资质条件
- GB/T 19851.20-2007中小学体育器材和场地第20部分:跳绳
- GB/T 14370-2015预应力筋用锚具、夹具和连接器
- 校园安全情景剧之《熊出没-死里逃生》 市赛一等奖
- 《新能源汽车底盘技术》任务1-1-2 减速器总成的更换
评论
0/150
提交评论