安徽省阜阳市颍州区阜阳三中高三适应性调研考试新高考数学试题及答案解析_第1页
安徽省阜阳市颍州区阜阳三中高三适应性调研考试新高考数学试题及答案解析_第2页
安徽省阜阳市颍州区阜阳三中高三适应性调研考试新高考数学试题及答案解析_第3页
安徽省阜阳市颍州区阜阳三中高三适应性调研考试新高考数学试题及答案解析_第4页
安徽省阜阳市颍州区阜阳三中高三适应性调研考试新高考数学试题及答案解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省阜阳市颍州区阜阳三中高三适应性调研考试新高考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数满足为虚数单位),则的虚部为()A. B. C. D.2.若,则,,,的大小关系为()A. B.C. D.3.若复数()是纯虚数,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则()A.1 B. C.2 D.35.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.06.设等差数列的前项和为,若,则()A.23 B.25 C.28 D.297.函数在上单调递减的充要条件是()A. B. C. D.8.如图,在中,,是上一点,若,则实数的值为()A. B. C. D.9.在中,为边上的中线,为的中点,且,,则()A. B. C. D.10.已知函数是定义在上的偶函数,且在上单调递增,则()A. B.C. D.11.若实数满足不等式组,则的最大值为()A. B. C.3 D.212.已知集合,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件则的最小值为__________.14.已知函数恰好有3个不同的零点,则实数的取值范围为____15.函数的值域为_____.16.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.18.(12分)在锐角三角形中,角的对边分别为.已知成等差数列,成等比数列.(1)求的值;(2)若的面积为求的值.19.(12分)[选修4-4:极坐标与参数方程]在直角坐标系中,曲线的参数方程为(是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)若射线与曲线交于,两点,与曲线交于,两点,求取最大值时的值20.(12分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.21.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.22.(10分)已知椭圆的长轴长为,离心率(1)求椭圆的方程;(2)设分别为椭圆与轴正半轴和轴正半轴的交点,是椭圆上在第一象限的一点,直线与轴交于点,直线与轴交于点,问与面积之差是否为定值?说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

,分子分母同乘以分母的共轭复数即可.【详解】由已知,,故的虚部为.故选:C.【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.2、D【解析】因为,所以,因为,,所以,.综上;故选D.3、B【解析】

化简复数,由它是纯虚数,求得,从而确定对应的点的坐标.【详解】是纯虚数,则,,,对应点为,在第二象限.故选:B.【点睛】本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题.4、C【解析】

连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的系数和,即可求出的值.【详解】连接AO,由O为BC中点可得,,、、三点共线,,.故选:C.【点睛】本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.5、C【解析】

集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.6、D【解析】

由可求,再求公差,再求解即可.【详解】解:是等差数列,又,公差为,,故选:D【点睛】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.7、C【解析】

先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质和图象,列不等式组求解可得.【详解】依题意,,令,则,故在上恒成立;结合图象可知,,解得故.故选:C.【点睛】本题考查求三角函数单调区间.求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.8、C【解析】

由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故选C.【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.9、A【解析】

根据向量的线性运算可得,利用及,计算即可.【详解】因为,所以,所以,故选:A【点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.10、C【解析】

根据题意,由函数的奇偶性可得,,又由,结合函数的单调性分析可得答案.【详解】根据题意,函数是定义在上的偶函数,则,,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题.11、C【解析】

作出可行域,直线目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图由射线,线段,射线围成的阴影部分(含边界),作直线,平移直线,当过点时,取得最大值1.故选:C.【点睛】本题考查简单的线性规划问题,解题关键是作出可行域,本题要注意可行域不是一个封闭图形.12、C【解析】

解不等式得出集合A,根据交集的定义写出A∩B.【详解】集合A={x|x2﹣2x﹣30}={x|﹣1x3},,故选C.【点睛】本题考查了解不等式与交集的运算问题,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

画出可行域,通过平移基准直线到可行域边界位置,由此求得目标函数的最小值.【详解】画出可行域如下图所示,由图可知:可行域是由三点,,构成的三角形及其内部,当直线过点时,取得最小值.故答案为:【点睛】本小题主要考查利用线性规划求目标函数的最值,考查数形结合的数学思想方法,属于基础题.14、【解析】

恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.15、【解析】

利用配方法化简式子,可得,然后根据观察法,可得结果.【详解】函数的定义域为所以函数的值域为故答案为:【点睛】本题考查的是用配方法求函数的值域问题,属基础题。16、3【解析】

双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a>0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析.【解析】

(1)连结根据中位线的性质证明即可.(2)证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,,,平面平面,平面平面.【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.18、(1);(2).【解析】

(1)根据成等差数列与三角形内角和可知,再利用两角和的正切公式,代入化简可得,同理根据三角形内角和与余弦的两角和公式与等比数列的性质可求得,联立即可求解求的值.(2)由(1)可知,再根据同角三角函数的关系与正弦定理可求得,再结合的面积为利用面积公式求解即可.【详解】解:成等差数列,可得而,即,展开化简得,因为,故①又成等比数列,可得,即,可得联立解得(负的舍去),可得锐角;由可得,由为锐角,解得,因为为锐角,故可得,由正弦定理可得,又的面积为可得,解得.【点睛】本题主要考查了等差等比中项的运用以及正切的和差角公式以及同角三角函数关系等.同时也考查了正弦定理与面积公式在解三角形中的运用,属于中档题.19、(1)的极坐标方程为.曲线的直角坐标方程为.(2)【解析】

(1)先得到的一般方程,再由极坐标化直角坐标的公式得到一般方程,将代入得,得到曲线的直角坐标方程;(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,,之后进行化一,可得到最值,此时,可求解.【详解】(1)由得,将代入得:,故曲线的极坐标方程为.由得,将代入得,故曲线的直角坐标方程为.(2)设点、的极坐标分别为,,将分别代入曲线、极坐标方程得:,,则,其中为锐角,且满足,,当时,取最大值,此时,【点睛】这个题目考查了参数方程化为普通方程的方法,极坐标化为直角坐标的方法,以及极坐标中极径的几何意义,极径代表的是曲线上的点到极点的距离,在参数方程和极坐标方程中,能表示距离的量一个是极径,一个是t的几何意义,其中极径多数用于过极点的曲线,而t的应用更广泛一些.20、(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是.试题解析:(1)函数的定义域为当时,,所以所以当时,,当时,,所以函数在区间单调递减,在区间单调递增,所以当时,函数取得极小值为,无极大值;(2)设函数上点与函数上点处切线相同,则所以所以,代入得:设,则不妨设则当时,,当时,所以在区间上单调递减,在区间上单调递增,代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时,又当时因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函数上点与函数上点处切线相同.又由得:所以单调递减,因此所以实数的取值范围是.21、(1)见解析;(2)①②3.386(万元)【解析】

(1)利用代入数值,求出后即可得解;(2)①计算出、后,利用求出后即可得解;②把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,,∴,说明与正相关,且相关性很强.(2)①由已知求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论