版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市浦东新区新高考仿真模拟数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,且在上是单调函数,则下列说法正确的是()A. B.C.函数在上单调递减 D.函数的图像关于点对称2.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.3.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.4.已知角的终边经过点,则的值是A.1或 B.或 C.1或 D.或5.已知集合,,则=()A. B. C. D.6.已知正项等比数列满足,若存在两项,,使得,则的最小值为().A.16 B. C.5 D.47.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,,,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为()A. B. C. D.9.函数在内有且只有一个零点,则a的值为()A.3 B.-3 C.2 D.-210.复数的虚部为()A. B. C.2 D.11.已知函数若关于的方程有六个不相等的实数根,则实数的取值范围为()A. B. C. D.12.若复数()是纯虚数,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是或作品获得一等奖”,若这四位同学中只有两位说的话是对的,则获得一等奖的作品是___.14.已知,则__________.15.在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_________.16.在各项均为正数的等比数列中,,且,成等差数列,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.18.(12分)已知等差数列的前n项和为,等比数列的前n项和为,且,,.(1)求数列与的通项公式;(2)求数列的前n项和.19.(12分)已知椭圆的左焦点坐标为,,分别是椭圆的左,右顶点,是椭圆上异于,的一点,且,所在直线斜率之积为.(1)求椭圆的方程;(2)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理.20.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?21.(12分)己知,函数.(1)若,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.22.(10分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
根据函数,在上是单调函数,确定,然后一一验证,A.若,则,由,得,但.B.由,,确定,再求解验证.C.利用整体法根据正弦函数的单调性判断.D.计算是否为0.【详解】因为函数,在上是单调函数,所以,即,所以,若,则,又因为,即,解得,而,故A错误.由,不妨令,得由,得或当时,,不合题意.当时,,此时所以,故B正确.因为,函数,在上是单调递增,故C错误.,故D错误.故选:B【点睛】本题主要考查三角函数的性质及其应用,还考查了运算求解的能力,属于较难的题.2、A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.3、A【解析】
令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.4、B【解析】
根据三角函数的定义求得后可得结论.【详解】由题意得点与原点间的距离.①当时,,∴,∴.②当时,,∴,∴.综上可得的值是或.故选B.【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可.5、C【解析】
计算,,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,意在考查学生的计算能力.6、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为,由已知,,即,解得或(舍),又,所以,即,故,所以,当且仅当时,等号成立.故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.7、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r8、B【解析】
先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.【详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,其和等于16的结果,共2种等可能的结果,故概率.故选:B.【点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.9、A【解析】
求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,,在单调递增,且,在不存在零点;若,,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.10、D【解析】
根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.11、B【解析】
令,则,由图象分析可知在上有两个不同的根,再利用一元二次方程根的分布即可解决.【详解】令,则,如图与顶多只有3个不同交点,要使关于的方程有六个不相等的实数根,则有两个不同的根,设由根的分布可知,,解得.故选:B.【点睛】本题考查复合方程根的个数问题,涉及到一元二次方程根的分布,考查学生转化与化归和数形结合的思想,是一道中档题.12、B【解析】
化简复数,由它是纯虚数,求得,从而确定对应的点的坐标.【详解】是纯虚数,则,,,对应点为,在第二象限.故选:B.【点睛】本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、C【解析】
假设获得一等奖的作品,判断四位同学说对的人数.【详解】分别获奖的说对人数如下表:获奖作品ABCD甲对错错错乙错错对错丙对错对错丁对错错对说对人数3021故获得一等奖的作品是C.【点睛】本题考查逻辑推理,常用方法有:1、直接推理结果,2、假设结果检验条件.14、【解析】解:由题意可知:.15、【解析】
由中位线定理和正方体性质得,从而作出异面直线所成的角,在三角形中计算可得.【详解】如图,连接,,,∵分别为棱的中点,∴,又正方体中,即是平行四边形,∴,∴,(或其补角)就是直线与直线所成角,是等边三角形,∴=60°,其正切值为.故答案为:.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角.16、【解析】
利用等差中项的性质和等比数列通项公式得到关于的方程,解方程求出代入等比数列通项公式即可.【详解】因为,成等差数列,所以,由等比数列通项公式得,,所以,解得或,因为,所以,所以等比数列的通项公式为.故答案为:【点睛】本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识综合运用能力;熟练掌握等差中项和等比数列通项公式是求解本题的关键;属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)乙同学正确;(2).【解析】
(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心点,判断出乙正确.(2)由线性回归方程得到的估计数据,计算出误差,求得“理想数据”的个数,由此利用古典概型概率计算公式,求得所求概率.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:021212由上表可知,“理想数据”的个数为.用列举法可知,从个不同数据里抽出个不同数据的方法有种.从符合条件的个不同数据中抽出个,还要在不符合条件的个不同数据中抽出个的方法有种.故所求概率为【点睛】本小题主要考查回归直线方程的判断,考查古典概型概率计算,考查数据处理能力,属于中档题.18、(1);(2)【解析】
(1)设数列的公差为d,由可得,,由即可解得,故,由,即可解得,进而求得.(2)由(1)得,,利用分组求和及错位相减法即可求得结果.【详解】(1)设数列的公差为d,数列的公比为q,由可得,,整理得,即,故,由可得,则,即,故.(2)由(1)得,,,故,所以,数列的前n项和为,设①,则②,②①得,综上,数列的前n项和为.【点睛】本题考查求等差等比的通项公式,考试分组求和及错位相减法求数列的和,考查学生的计算能力,难度一般.19、(1)(2)直线过定点【解析】
(1),再由,解方程组即可;(2)设,,由,得,由直线MN的方程与椭圆方程联立得到根与系数的关系,代入计算即可.【详解】(1)由题意知:,又,且解得,,∴椭圆方程为,(2)当直线的斜率存在时,设其方程为,设,,由,得.则,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直线过点当直线的斜率不存在时,设直线的方程为,,,其中,∴,由,得,所以∴当直线的斜率不存在时,直线也过定点综上所述,直线过定点.【点睛】本题考查求椭圆的标准方程以及直线与椭圆位置关系中的定点问题,在处理直线与椭圆的位置关系的大题时,一般要利用根与系数的关系来求解,本题是一道中档题.20、每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】
设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.21、(1);(2)【解析】
(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【详解】(1)当时,,当时,由,解得;当时,由,解得;当时,由,解得.综
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024会议服务综合劳务协议范本版B版
- 2024年三方担保电子商务支付合同范本一
- 2024年度专业足浴技师聘用协议样本版B版
- 2024年办公室员工餐饮服务协议样本版B版
- 2024年局部工程维护施工协议文件版
- 2024年度劳动合作协议模板指南版B版
- 2024年家居铝合金窗安装合同版B版
- 2024品牌橱柜购销合约书
- 2024年工程建设项目招标文件规范协议版B版
- 2024年产品销售合作及服务保障合同样本一
- 英语-Spotify的营销战略分析
- 《花生种植技术》课件
- 厂内自卸车安全操作规程
- 副食品安全保障措施
- 2024年北京市智能制造行业市场发展分析及发展趋势与投资前景研究报告2024-2029版
- 直播带货主播培训课件
- 高尔夫球场球童培训
- 冬季高血压的预防
- 我的家乡镇江
- 《口腔基础知识》课件
- 食堂消防安全知识培训内容
评论
0/150
提交评论