版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省枣庄十八中高一下数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.甲、乙两名篮球运动员最近五场比赛的得分如茎叶图所示,则()A.甲的中位数和平均数都比乙高B.甲的中位数和平均数都比乙低C.甲的中位数比乙的中位数高,但平均数比乙的平均数低D.甲的中位数比乙的中位数低,但平均数比乙的平均数高2.如果直线a平行于平面,则()A.平面内有且只有一直线与a平行B.平面内有无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行3.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)4.用数学归纳法证明不等式的过程中,由递推到时,不等式左边()A.增加了一项B.增加了两项,C.增加了A中的一项,但又减少了另一项D.增加了B中的两项,但又减少了另一项5.已知向量,与的夹角为,则()A.3 B.2 C. D.16.已知、的取值如下表所示:如果与呈线性相关,且线性回归方程为,则()A. B. C. D.7.已知,若,则的值是().A.-1 B.1 C.2 D.-28.如图,在中,,点在边上,且,则等于()A. B. C. D.9.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为A.35 B.20 C.18 D.910.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是()A.1 B.-2 C.1或-2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.设()则数列的各项和为________12.函数的定义域为_____________.13.计算:______.14.在中,,,.若,,且,则的值为______________.15.若三角形ABC的三个角A,B,C成等差数列,a,b,c分别为角A,B,C的对边,三角形ABC的面积,则b的最小值是________.16.已知关于实数x,y的不等式组构成的平面区域为,若,使得恒成立,则实数m的最小值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少?(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?18.已知数列的前项和为,.(1)求数列的通项公式;(2)设,求数列的前项和.19.已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值.20.已知圆:.(Ⅰ)求过点的圆的切线方程;(Ⅱ)设圆与轴相交于,两点,点为圆上异于,的任意一点,直线,分别与直线交于,两点.(ⅰ)当点的坐标为时,求以为直径的圆的圆心坐标及半径;(ⅱ)当点在圆上运动时,以为直径的圆被轴截得的弦长是否为定值?请说明理由.21.已知,,,.(1)求的最小值(2)证明:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
分别计算出两组数据的中位数和平均数即可得出选项.【详解】根据题意:甲的平均数为:,中位数为29,乙的平均数为:,中位数为30,所以甲的中位数和平均数都比乙低.故选:B【点睛】此题考查根据茎叶图表示的数据分别辨析平均数和中位数的大小关系,分别计算求解即可得出答案.2、B【解析】
根据线面平行的性质解答本题.【详解】根据线面平行的性质定理,已知直线平面.
对于A,根据线面平行的性质定理,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故A错误;
对于B,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故B正确;
对于C,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,所以C错误;
对于D,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,则在平面内与直线相交的直线与a不平行,所以D错误;
故选:B.【点睛】本题考查了线面平行的性质定理;如果直线与平面平行,那么过直线的平面与已知平面相交,直线与交线平行.3、C【解析】
由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.4、D【解析】
根据题意,分别写出和时,左边对应的式子,进而可得出结果.【详解】当时,左边,当时,左边,所以,由递推到时,不等式左边增加了,;减少了;故选:D【点睛】本题主要考查数学归纳法的应用,熟记数学归纳法,会求增量即可,属于基础题型.5、C【解析】
由向量的模公式以及数量积公式,即可得到本题答案.【详解】因为向量,与的夹角为,所以.故选:C【点睛】本题主要考查平面向量的模的公式以及数量积公式.6、A【解析】
计算出、,再将点的坐标代入回归直线方程,可求出的值.【详解】由表格中的数据可得,,由于回归直线过样本的中心点,则有,解得,故选:A.【点睛】本题考查回归直线方程中参数的计算,解题时要充分利用回归直线过样本的中心点这一结论,考查计算能力,属于基础题.7、C【解析】
先求出的坐标,再利用向量平行的坐标表示求出c的值.【详解】由题得,因为,所以2(c-2)-2×0=0,所以c=2.故选C【点睛】本题主要考查向量的坐标计算和向量共线的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.8、C【解析】
在中,由余弦定理求得,在中,利用正弦定理求得BD,则可得CD.【详解】在中,由余弦定理可得.又,故为直角三角形,故.因为,且为锐角,故.由利用正弦定理可得,代值可得,故.故选:C.【点睛】本题考查利用正弦定理以及余弦定理解三角形,属于综合基础题.9、C【解析】试题分析:模拟算法:开始:输入成立;,成立;,成立;,不成立,输出.故选C.考点:1.数学文化;2.程序框图.10、A【解析】
分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求.【详解】①当时,两直线分别为和,此时两直线相交,不合题意.②当时,两直线的斜率都存在,由直线平行可得,解得.综上可得.故选A.【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据无穷等比数列的各项和的计算方法,即可求解,得到答案.【详解】由题意,数列的通项公式为,且,所以数列的各项和为.故答案为:.【点睛】本题主要考查了无穷等比数列的各项和的求解,其中解答中熟记无穷等比数列的各项和的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】函数的定义域为故答案为13、【解析】
直接利用反三角函数运算法则写出结果即可.【详解】解:.故答案为:.【点睛】本题考查反三角函数的运算法则的应用,属于基础题.14、【解析】,则.【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的已知模和夹角,选作基地易于计算数量积.15、【解析】
先求出,再根据面积得到,再利用余弦定理和基本不等式得解.【详解】由题得,所以.由余弦定理得,当且仅当时取等.所以b的最小值是.故答案为:【点睛】本题主要考查余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.16、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面区域内的点与定点距离的平方,因此结合平面区域即可求出结果.【详解】作出约束条件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目标函数,则目标函数表示平面区域内的点与定点距离的平方,由图像易知,点到的距离最大.由得,所以.因此,即的最小值为37.故答案为37【点睛】本题主要考查简单的线性规划问题,只需分析清楚目标函数的几何意义,即可结合可行域来求解,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)312(2)【解析】试题分析:(1)明确柱体与锥体积公式的区别,分别代入对应公式求解;(2)先根据体积关系建立函数解析式,,然后利用导数求其最值.试题解析:解:(1)由PO1=2知OO1=4PO1=8.因为A1B1=AB=6,所以正四棱锥P-A1B1C1D1的体积正四棱柱ABCD-A1B1C1D1的体积所以仓库的容积V=V锥+V柱=24+288=312(m3).(2)设A1B1=a(m),PO1=h(m),则0<h<6,OO1=4h.连结O1B1.因为在中,所以,即于是仓库的容积,从而.令,得或(舍).当时,,V是单调增函数;当时,,V是单调减函数.故时,V取得极大值,也是最大值.因此,当m时,仓库的容积最大.【考点】函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点等方面进行强化,注重培养将文字语言转化为数学语言的能力,强化构建数学模型的几种方法.而江苏高考的应用题往往需结合导数知识解决相应的最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.18、(1);(2).【解析】
(1)由递推公式,再递推一步,得,两式相减化简得,可以判断数列是等差数列,进而可以求出等差数列的通项公式;(2)根据(1)和对数的运算性质,用裂项相消法可以求出数列的前项和.【详解】解:(1)由知所以,即,从而所以,数列是以2为公比的等比数列又可得,综上所述,故.(2)由(1)可知,故,综上所述,所以,故而所以.【点睛】本题考查了已知递推公式求数列通项公式问题,考查了等差数列的判断以及等差数列的通项公式,考查了用裂项相消法求数列前项和问题,考查了数学运算能力.19、:(Ⅰ)(Ⅱ)【解析】试题分析:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1,从而得到{an}的通项公式.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1),再由=a1Sk+1,求得正整数k的值.解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1.∴{an}的通项公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1).∵若a1,ak,Sk+1成等比数列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考点:等比数列的性质;等差数列的通项公式.20、(Ⅰ)或;(Ⅱ)(ⅰ)圆心为,半径;(ⅱ)见解析【解析】
(Ⅰ)先判断在圆外,所以圆过点的切线有两条.再由斜率是否存在分别讨论.(Ⅱ)(ⅰ)设直线PA和PB把其与直线交于,两点表示出来,写出圆的方程化简即可.(ⅱ)先求出以为直径的圆被轴截得的弦长,在设出PA和PB的直线方程,分别求出与直线的交点,求出圆心,再根据勾股定理易求解.【详解】(Ⅰ)因为点在圆外,所以圆过点的切线有两条.当直线的斜率不存在时,直线方程为,满足条件.当直线的斜率存在时,可设为,即.由圆心到切线的距离,解得.此时切线方程为.综上,圆的切线方程为或.(Ⅱ)因为圆与轴相交于,两点,所以,.(ⅰ)当点坐标为时,直线的斜率为,直线的方程为.直线与直线的交点坐标为,同理直线的斜率为,直线的方程为.直线与直线的交点坐标为.所以以为直径的圆的圆心为,半径.(ⅱ)以为直径的圆被轴截得的弦长为定值.设点,则.直线的斜率为,直线的方程为.直线与直线的交点坐标为.同理直线的斜率为,直线的方程为.直线与直线的交点坐标为.所以圆的圆心,半径为.方法一:圆被轴截得的弦长为.所以以为直径的圆被轴截得的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024中国电信湖北潜江分公司招聘4人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信吉林白山分公司校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度二人店铺合作监管合同:共同遵守法律法规确保合规经营2篇
- 2024“才聚齐鲁成就未来”山东省机场管理集团限公司夏季招聘32人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度智能家居定制合同定制内容与交付时间
- 《传统工业区和新兴》课件
- 《导航效果平台》课件
- 2024年度合作开发合同的订立与权益分配2篇
- 《mis数据仓库》课件
- 2024年度茶叶行业培训合同
- 学校体育馆应急疏散预案
- Unit3lesson2说课稿 - 2024-2025学年冀教版七年级英语上册
- 2024年6月2日《证券投资顾问》真题卷(79题)
- 金融知识进万家
- 招商专员培训资料
- 2025年中考语文复习之文言文阅读
- 福建省厦门市2024-2025学年新人教版九年级语文上学期期末质量检测试题
- 江苏省苏州四市联考2024-2025学年七年级上学期期中考试英语试题(含答案无听力原文及音频)
- 2024统编版(2024)道德与法治小学一年级上册教学设计(附目录)
- 2024版《中医基础理论经络》课件完整版
- 2024年全球 二次元移动游戏市场研究报告-点点数据
评论
0/150
提交评论