2025届江西省上饶高一下数学期末监测模拟试题含解析_第1页
2025届江西省上饶高一下数学期末监测模拟试题含解析_第2页
2025届江西省上饶高一下数学期末监测模拟试题含解析_第3页
2025届江西省上饶高一下数学期末监测模拟试题含解析_第4页
2025届江西省上饶高一下数学期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省上饶高一下数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”2.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.43.在天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指()A.明天该地区有的地方降水,有的地方不降水B.明天该地区有的时间降水,其他时间不降水C.明天该地区降水的可能性为D.气象台的专家中有的人认为会降水,另外有的专家认为不降水4.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B. C. D.5.已知向量,若,则()A. B. C. D.6.下面的程序运行后,输出的值是()A.90 B.29 C.13 D.547.若,则()A.-1 B. C.-1或 D.或8.设为锐角三角形,则直线与两坐标轴围成的三角形的面积的最小值是()A.10 B.8 C.4 D.29.式子的值为()A. B.0 C.1 D.10.已知的三个内角所对的边分别为,满足,且,则的形状为()A.等边三角形 B.等腰直角三角形C.顶角为的等腰三角形 D.顶角为的等腰三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线y=b(0<b<1)与函数f(x)=sinωx(ω>0)在y轴右侧依次的三个交点的横坐标为x1=,x2=,x3=,则ω的值为______12.若,则__________.13.已知数列的前项和为,,则__________.14.如图是一个算法的流程图,则输出的的值是________.15.设Sn为数列{an}的前n项和,若Sn=(-1)nan-,n∈N,则a3=________.16.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC的中点,M(1)求证:AE⊥平面PAD;(2)若AB=AP=2,求三棱锥P-ACM的体积.18.设向量、满足,,.(1)求的值;(2)若,求实数的值.19.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求证:平面PEC⊥平面PCD.20.已知,是第四象限角,求和的值.21.已知函数.(1)当时,,求的值;(2)令,若对任意都有恒成立,求的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.2、B【解析】

判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.3、C【解析】

预报“明天降水的概率为”,属于随机事件,可能下雨,也可能不下雨,即可得到答案.【详解】由题意,天气预报中,有“降水概率预报”,例如预报“明天降水的概率为”,这是指明天下雨的可能性是,故选C.【点睛】本题主要考查了随机事件的概念及其概率,其中正确理解随机事件的概率的概念是解答此类问题的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、C【解析】

根据题意可知所求的球为正四棱柱的外接球,根据正四棱柱的特点利用勾股定理可求得外接球半径,代入球的体积公式求得结果.【详解】由题意可知所求的球为正四棱柱的外接球底面正方形对角线长为:外接球半径外接球体积本题正确选项:【点睛】本题考查正棱柱外接球体积的求解问题,关键是能够根据正棱柱的特点确定球心位置,从而利用勾股定理求得外接球半径.5、A【解析】

先根据向量的平行求出的值,再根据向量的加法运算求出答案.【详解】向量,,

解得,

∴,

故选A.【点睛】本题考查了向量的平行和向量的坐标运算,属于基础题.6、D【解析】

根据程序语言的作用,模拟程序的运行结果,即可得到答案.【详解】模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,退出循环,输出的值为1.故选:D.【点睛】本题考查利用模拟程序执行过程求输出结果,考查逻辑推理能力和运算求解能力,属于基础题.7、C【解析】

将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【详解】由得:即,解得:或本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.8、B【解析】

令,得直线在x、y轴上的截距,求得三角形面积并利用二倍角公式化简,根据三角函数图象和性质求得面积最小值即可.【详解】令得直线在y轴上的截距为,令得直线在x轴上的截距为,其围成的三角形面积:,求S的最小值转化为求函数的最小值,因为为锐角,所以,当时取最小值−1,则,故围成三角形面积最小值为8.故选:B.【点睛】本题考查直线方程与三角函数二倍角公式的应用,综合题性较强,属于中等题.9、D【解析】

利用两角和的正弦公式可得原式为cos(),再由特殊角的三角函数值可得结果.【详解】cos()=coscos,故选D.【点睛】本题考查两角和的余弦公式,熟练掌握两角和与差的余弦公式以及特殊角的三角函数值是解题的关键,属于基础题.10、D【解析】

先利用同角三角函数基本关系得,结合正余弦定理得进而得B,再利用化简得,得A值进而得C,则形状可求【详解】由题即,由正弦定理及余弦定理得即故整理得,故故为顶角为的等腰三角形故选D【点睛】本题考查利用正余弦定理判断三角形形状,注意内角和定理,三角恒等变换的应用,是中档题二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由题得函数的周期为解之即得解.【详解】由题得函数的周期为.故答案为1【点睛】本题主要考查三角函数的图像和性质,考查三角函数的周期,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、;【解析】

把分子的1换成,然后弦化切,代入计算.【详解】.故答案为-1.【点睛】本题考查三角函数的化简求值.解题关键是“1”的代换,即,然后弦化切.13、【解析】分析:由,当时,当时,相减可得,则,由此可以求出数列的通项公式详解:当时,当时由可得二式相减可得:又则数列是公比为的等比数列点睛:本题主要考查了等比数列的通项公式即数列递推式,在解答此类问题时看到,则用即可算出,需要注意讨论的情况。14、【解析】由程序框图,得运行过程如下:;,结束循环,即输出的的值是7.15、-【解析】当n=3时,S3=a1+a2+a3=-a3-,则a1+a2+2a3=-,当n=4时,S4=a1+a2+a3+a4=a4-,两式相减得a3=-.16、【解析】

先求出四棱锥的底面对角线的长度,结合勾股定理可求出四棱锥的高,然后由圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,可知四条侧棱的中点连线为正方形,其对角线为圆柱底面的直径,圆柱的高为四棱锥的高的一半,分别求解可求出圆柱的侧面积.【详解】由题可知,四棱锥是正四棱锥,四棱锥的四条侧棱的中点连线为正方形,边长为,该正方形对角线的长为1,则圆柱的底面半径为,四棱锥的底面是边长为的正方形,其对角线长为2,则四棱锥的高为,故圆柱的高为1,所以圆柱的侧面积为.【点睛】本题主要考查了空间几何体的结构特征,考查了学生的空间想象能力与计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)3【解析】

(1)本题首先可以通过菱形的相关性质证明出AE⊥AD,然后通过PA⊥菱形ABCD所在的平面证明出PA⊥AE,最后通过线面垂直的相关性质即可得出结果;(2)可以将三角形APM当成三棱锥P-ACM的底面,将AE当成三棱锥P-ACM的高,最后通过三棱锥的体积计算公式即可得出结果.【详解】(1)证明:连接AC,因为底面ABCD为菱形,∠ABC=60°,所以因为E是BC的中点,所以AE⊥BC,因为AD//BC,所以AE⊥AD,因为PA⊥平面ABCD,AE⊆平面ABCD,所以PA⊥AE,又因为PA∩AD=A,所以AE⊥平面PAD.(2)AB=AP=2,则AD=2,AE=3所以Vp【点睛】本题考查立体几何的相关性质,主要考查线面垂直的证明以及三棱锥体积的求法,可以通过证明平面外一条直线垂直平面内的两条相交直线来证明线面垂直,考查推理能力,是中档题.18、(1);(2).【解析】

(1)将等式两边平方,利用平面向量数量积的运算律可计算出的值;(2)由转化为,然后利用平面向量数量积的运算律可求出实数的值.【详解】(1)在等式两边平方得,即,即,解得;(2),,即,解得.【点睛】本题考查利用平面向量的模求数量积,同时也考查了利用平面向量数量积来处理平面向量垂直的问题,考查化归与转化数学思想,属于基础题.19、(Ⅰ)见解析(Ⅱ)见解析【解析】

(Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【详解】证明:(Ⅰ)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG∥CD,FG=CD.∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=CD.∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【点睛】本题考查了空间线面平行、面面垂直的判定,属于中档题.20、,【解析】

利用诱导公式可求的值,根据是第四象限角可求的值,最后根据三角函数的基本关系式可求的值,根据诱导公式及倍角公式可求的值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论