江西省赣州一中2025届数学高一下期末质量检测试题含解析_第1页
江西省赣州一中2025届数学高一下期末质量检测试题含解析_第2页
江西省赣州一中2025届数学高一下期末质量检测试题含解析_第3页
江西省赣州一中2025届数学高一下期末质量检测试题含解析_第4页
江西省赣州一中2025届数学高一下期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州一中2025届数学高一下期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以下现象是随机现象的是A.标准大气压下,水加热到100℃,必会沸腾B.长和宽分别为a,b的矩形,其面积为C.走到十字路口,遇到红灯D.三角形内角和为180°2.是等差数列的前n项和,如果,那么的值是()A.12 B.24 C.36 D.483.已知函数,则()A.2 B.-2 C.1 D.-14.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦矢+矢矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为,弦长为米的弧田,其实际面积与按照上述经验公式计算出弧田的面积之间的误差为()平方米(其中,)A.14 B.16 C.18 D.205.某厂家生产甲、乙、丙三种不同类型的饮品・产量之比为2:3:4.为检验该厂家产品质量,用分层抽样的方法抽取一个容量为72的样本,则样本中乙类型饮品的数量为A.16 B.24 C.32 D.486.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线7.下列不等式正确的是()A.若,则 B.若,则C.若,则 D.若,则8.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天9.设等比数列的前项和为,若,公比,则的值为()A.15 B.16 C.30 D.3110.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,将全体正整数排成一个三角形数阵,按照这样的排列规律,第行从右至左的第3个数为___________.12.无限循环小数化成最简分数为________13.若,则_______.14.如图,半径为的扇形的圆心角为,点在上,且,若,则__________.15.在中,角A,B,C的对边分别为,若,则此三角形的最大内角的度数等于________.16.设是定义在上以2为周期的偶函数,已知,,则函数在上的解析式是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列的前n项和为,,.(1)求;(2)设,求数列的前n项和.18.如图,四棱锥的底面为平行四边形,为中点.(1)求证:平面;(2)求证:平面.19.某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求辆纯电动汽车续驶里程的中位数;(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.20.已知函数.(1)若关于的不等式的解集是,求,的值;(2)设关于的不等式的解集是,集合,若,求实数的取值范围.21.已知是公差不为0的等差数列,,,成等比数列,且.(1)求数列的通项公式;(2)若,数列的前项和为,证明:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

对每一个选项逐一分析判断得解.【详解】A.标准大气压下,水加热到100℃,必会沸腾,是必然事件;B.长和宽分别为a,b的矩形,其面积为,是必然事件;C.走到十字路口,遇到红灯,是随机事件;D.三角形内角和为180°,是必然事件.故选C【点睛】本题主要考查必然事件、随机事件的定义与判断,意在考查学生对该知识的理解掌握水平,属于基础题.2、B【解析】

由等差数列的性质:若m+n=p+q,则即可得.【详解】故选B【点睛】本题考查等比数列前n项和的求解和性质的应用,是基础题型,解题中要注意认真审题,注意下标的变化规律,合理地进行等价转化.3、B【解析】

根据分段函数的表达式,直接代入即可得到结论.【详解】由分段函数的表达式可知,则,故选:.【点睛】本题主要考查函数值的计算,根据分段函数的表达式求解是解决本题的关键,属于容易题.4、B【解析】

根据题意画出图形,结合图形求出扇形的面积与三角形的面积,计算弓形的面积,再利用弧长公式计算弧田的面积,求两者的差即可.【详解】如图所示,扇形的半径为,所以扇形的面积为,又三角形的面积为,所以弧田的面积为,又圆心到弦的距离等于,所示矢长为,按照上述弧田的面积经验计算可得弦矢矢,所以两者的差为.故选:B.【点睛】本题主要考查了扇形的弧长公式和面积公式的应用,以及我国古典数学的应用问题,其中解答中认真审题,合理利用扇形弧长和面积公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.5、B【解析】

根据分层抽样各层在总体的比例与在样本的比例相同求解.【详解】因为分层抽样总体和各层的抽样比例相同,所以各层在总体的比例与在样本的比例相同,所以样本中乙类型饮品的数量为.故选B.【点睛】本题考查分层抽样,依据分层抽样总体和各层的抽样比例相同.6、B【解析】

利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角性.7、B【解析】试题分析:A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B.若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.考点:不等式的性质.8、A【解析】

设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.利用等比数列的前n项和公式及其对数的运算性质即可得出..【详解】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.则An,Bn,由题意可得:,化为:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估计2.3日蒲、莞长度相等,故选:A.【点睛】本题考查了等比数列的通项公式与求和公式在实际中的应用,考查了推理能力与计算能力,属于中档题.9、A【解析】

直接利用等比数列前n项和公式求.【详解】由题得.故选A【点睛】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.10、D【解析】

根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题可以先算出第行的最后一个数,再从右至左算出第3个数即可.【详解】由图得,第行有个数,故前行一共有个数,即第行最后一个数为,故第行从右至左的第3个数为.【点睛】本题主要考查等差数列求和问题,注意从右至左的第3个数为最后一个数减2.12、【解析】

利用无穷等比数列求和的方法即可.【详解】.故答案为:【点睛】本题主要考查了无穷等比数列的求和问题,属于基础题型.13、【解析】

对两边平方整理即可得解.【详解】由可得:,整理得:所以【点睛】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.14、【解析】根据题意,可得OA⊥OC,以O为坐标为坐标原点,OC,OA所在直线分别为x轴、y轴建立平面直角坐标系,如图所示:则有C(1,0),A(0,1),B(cos30°,-sin30°),即.于是.由,得:,则:,解得.∴.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15、【解析】

根据大角对大边,利用余弦定理直接计算得到答案.【详解】在中,角A,B,C的对边分别为,若不妨设三边分别为:3,5,7根据大角对大边:角C最大故答案为【点睛】本题考查了余弦定理,属于简单题.16、【解析】试题分析:根据题意,由于是定义在上以2为周期的偶函数,那么当,,可知当x,,那么利用周期性可知,在上的解析式就是将x,的图像向右平移2个单位得到的,因此可知,答案为.考点:函数奇偶性、周期性的运用点评:解决此类问题的关键是熟练掌握函数的有关性质,即周期性,奇偶性,单调性等有关性质.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)在等差数列中根据,,可求得其首项与公差,从而可求得;(2)可证明为等比数列,利用等比数列的求和公式计算即可.【详解】(1);(2),所以.【点睛】本题考查等比数列的前项和,着重考查等差数列的性质与通项公式及等比数列的前项和公式,属于基础题.18、(1)证明见解析;(2)证明见解析.【解析】

(1)通过证明得线面平行;(2)连接交于,连接,通过证明得线面平行.【详解】(1)由题:四棱锥的底面为平行四边形,所以,平面,平面,所以平面;(2)连接交于,连接,如图:底面为平行四边形,是中点,为中点,所以,平面,平面,所以平面.【点睛】此题考查线面平行的证明,关键在于准确寻找出线线平行,证明题注意书写规范.19、(1)(2)(3)【解析】

(1)利用小矩形的面积和为,求得值,即可求得答案;(2)中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,即可求得答案;(3)据直方图求出续驶里程在和续驶里程在的车辆数,利用排列组合和概率公式求出其中恰有一辆车的续驶里程在的概率,即可求得答案.【详解】(1)由直方图可得:(2)根据中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标.直方图可得:可得:辆纯电动汽车续驶里程的中位数.(3)续驶里程在的车辆数为:续驶里程在第五组的车辆数为.从辆车中随机抽取辆车,共有中抽法,其中恰有一辆车的续驶里程在的抽法有种,其中恰有一辆车的续驶里程在的概率为.【点睛】本题考查根据条型统计图求数据的中位数和根据组合数求概率问题,解题关键是掌握条型统计图基础知识和概率的求法,考查了分析能力和计算能力,属于中档题.20、(1),.(2).【解析】分析:(1)先根据不等式解集与对应方程根的关系得x2-(a+1)x+1=0的两个实数根为m、2,再利用韦达定理得结果.(2)当A∩B=时,即不等式f(x)>0对x∈B恒成立,再利用变量分离法得a+1<x+的最小值,最后根据基本不等式求最值,即得结果.详解:(1)∵关于x的不等式f(x)<0的解集是{x|m<x<2},∴对应方程x2-(a+1)x+1=0的两个实数根为m、2,由根与系数的关系,得,解得a=,m=;(2)∵关于x的不等式f(x)≤0的解集是A,集合B={x|0≤x≤1},当A∩B=时,即不等式f(x)>0对x∈B恒成立;即x∈时,x2-(a+1)x+1>0恒成立,∴a+1<x+对于x∈(0,1]恒成立(当时,1>0恒成立);∵当x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论