山东省潍坊新2025届数学高一下期末联考试题含解析_第1页
山东省潍坊新2025届数学高一下期末联考试题含解析_第2页
山东省潍坊新2025届数学高一下期末联考试题含解析_第3页
山东省潍坊新2025届数学高一下期末联考试题含解析_第4页
山东省潍坊新2025届数学高一下期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省潍坊新2025届数学高一下期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,则的最大值为A. B. C. D.2.设集合,,,则()A. B. C. D.3.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是()A.该超市这五个月中,利润随营业额的增长在增长B.该超市这五个月中,利润基本保持不变C.该超市这五个月中,三月份的利润最高D.该超市这五个月中的营业额和支出呈正相关4.已知实心铁球的半径为,将铁球熔成一个底面半径为、高为的圆柱,则()A. B. C. D.5.定义在上的函数若关于的方程(其中)有个不同的实根,,…,,则()A. B. C. D.6.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值7.已知为三条不同直线,为三个不同平面,则下列判断正确的是()A.若,,,,则B.若,,则C.若,,,则D.若,,,则8.执行如图所示的程序框图,若输入的,则输出A. B. C. D.9.已知实数m,n满足不等式组则关于x的方程x2-(3m+2n)x+6mn=0的两根之和的最大值和最小值分别是()A.7,-4 B.8,-8C.4,-7 D.6,-610.已知函数的图像如图所示,关于有以下5个结论:(1);(2),;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)二、填空题:本大题共6小题,每小题5分,共30分。11.方程在区间的解为_______.12.若圆与圆的公共弦长为,则________.13.已知平面向量,,满足:,且,则的最小值为____.14.已知,则____________________________.15.若是等比数列,,,则________16.已知等差数列的公差为2,若成等比数列,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线的方程为,其中.(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时直线的方程.18.关于的不等式,其中为大于0的常数。(1)若不等式的解集为,求实数的取值范围;(2)若不等式的解集为,且中恰好含有三个整数,求实数的取值范围.19.在中,角A,B,C的对边分别为a,b,c,若,.(1)求角A的大小;(2)若,求的周长.20.已知函数(1)求的定义域;(2)设是第三象限角,且,求的值.21.记数列的前项和为,已知点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

利用正弦定理得出的外接圆直径,并利用正弦定理化边为角,利用三角形内角和关系以及两角差正弦公式、配角公式化简,最后利用正弦函数性质可得出答案.【详解】中,,,则,,其中由于,所以,所以最大值为.故选A.【点睛】本题考查正弦定理以及两角差正弦公式、配角公式,考查基本分析计算能力,属于中等题.2、A【解析】因为,所以,又因为,,故选A.3、D【解析】

根据折线图,分析出超市五个月中利润的情况以及营业额和支出的相关性.【详解】对于A选项,五个月的利润依次为:,其中四月比三月是下降的,故A选项错误.对于B选项,五月的月份是一月和四月的两倍,说明利润有比较大的波动,故B选项错误.对于C选项,五个月的利润依次为:,所以五月的利润最高,故C选项错误.对于D选项,根据图像可知,超市这五个月中的营业额和支出呈正相关,故D选项正确.故选:D【点睛】本小题主要考查折线图的分析与理解,属于基础题.4、B【解析】

根据变化前后体积相同计算得到答案.【详解】故答案选B【点睛】本题考查了球体积,圆柱体积,抓住变化前后体积不变是解题的关键.5、C【解析】画出函数的图象,如图,由图可知函数的图象关于对称,解方程方程,得或,时有三个根,,时有两个根,所以关于的方程共有五个根,,,故选C.【方法点睛】本题主要考查函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.6、C【解析】

根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.7、C【解析】

根据线线位置关系,线面位置关系,以及面面位置关系,逐项判断,即可得出结果.【详解】A选项,当时,由,可得,此时由,可得或或与相交;所以A错误;B选项,若,,则,或相交,或异面;所以B错误;C选项,若,,,根据线面平行的性质,可得,所以C正确;D选项,若,,则或,又,则,或相交,或异面;所以D错误;故选C【点睛】本题主要考查线面,面面有关命题的判定,熟记空间中点线面位置关系即可,属于常考题型.8、B【解析】

首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】由流程图可知,程序输出的值为:,即.故选B.【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.9、A【解析】由题意得,方程的两根之和,画出约束条件所表示的平面区域,如图所示,由,可得,此时,由,可得,此时,故选A.10、B【解析】

由图象可观察出的最值和周期,从而求出,将图像上所有的点向右平移个单位得到的函数,可判断(3)的正误,利用,可判断(4)(5)的正误.【详解】由图可知:,所以,,所以,即因为,所以,所以,故(1)(2)正确将图像上所有的点向右平移个单位得到的函数为此函数是奇函数,故(3)错误因为所以关于直线对称,即有故(4)正确因为所以关于点对称,即有故(5)正确综上可知:正确的有(1)(2)(4)(5)故选:B【点睛】本题考查的是三角函数的图象及其性质,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】

由题意求得,利用反三角函数求出方程在区间的解.【详解】解:,得,,或,;方程在区间的解为:或.故答案为:或.【点睛】本题考查了三角函数方程的解法与应用问题,是基础题.12、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.13、-1【解析】

,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【点睛】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.14、【解析】

分子、分母同除以,将代入化简即可.【详解】因为,所以,故答案为.【点睛】本题主要考查同角三角函数之间的关系的应用,属于基础题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.15、【解析】

根据等比数列的通项公式求解公比再求和即可.【详解】设公比为,则.故故答案为:【点睛】本题主要考查了等比数列的基本量求解,属于基础题型.16、【解析】

利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)5;(3)见解析【解析】试题分析:(1)分离系数m,求解方程组可得直线恒过定点;(2)结合(1)的结论可得点到直线的距离的最大值是5;(3)由题意得到面积函数:,注意等号成立的条件.试题解析:(1)证明:直线方程可化为该方程对任意实数恒成立,所以解得,所以直线恒过定点(2)点与定点间的距离,就是所求点到直线的距离的最大值,即(3)由于直线过定点,分别与轴,轴的负半轴交于两点,设其方程为,则所以当且仅当时取等号,面积的最小值为4此时直线的方程为18、(1);(2)【解析】

(1)关于的不等式的解集为,得出判别式△,且,由此求出的取值范围;(2)由题意知判别式△,设,利用对称轴以及(1),,得出不等式的解集中恰好有三个整数,等价于,由此求出的取值范围.【详解】(1)由题意得一元二次不等式对应方程的判别式,结合,解得.(2)由题意得一元二次不等式对应方程的判别式,解得.又,所以.设,其对称轴为.注意到,,对称轴,所以不等式解集中恰好有三个整数只能是1、2、3,此时中恰好含有三个整数等价于:,解得.【点睛】本题考查了不等式的解法与应用问题.19、(1);(2)【解析】

(1)根据三角形面积公式,结合平面向量数量积定义,分别表示出,联立即可求得,进而得的值.(2)由,结合余弦定理即可表示出,由(1)可得.即可联立表示出,进而求得周长.【详解】(1)因为,所以,则而,可得,所以即化简可得所以;(2)因为,所以由余弦定理可得,即,由(1)知,则,所以,所以的周长为.【点睛】本题考查了三角形面积公式的应用,余弦定理解三角形,平面向量数量积的定义及应用,属于中档题.20、(1)(2)【解析】

(1)由分母不为0可求得排烟阀;(2)由同角间的三角函数关系求得,由两角差的余弦公式展开,再由二倍角公式化为单角的函数,最后代入的值可得.【详解】(1)由得,,所以,,故的定义域为(答案写成“”也正确)(2)因为,且是第三象限角,所以由可解得,.故.【点睛】本题考查三角函数的性质,考查同角间的三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论