版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省重点高中2025届高一数学第二学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个 B.2个 C.3个 D.4个2.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元3.已知是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则4.已知关于的不等式的解集为,则的值为()A.4 B.5 C.7 D.95.已知数列的前项和为,且,若,,则的值为()A.15 B.16 C.17 D.186.在中,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.7.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.8.已知函数的零点是和(均为锐角),则()A. B. C. D.9.经过原点且倾斜角为的直线被圆C:截得的弦长是,则圆在轴下方部分与轴围成的图形的面积等于()A. B. C. D.10.在平行四边形ABCD中,若,则必有()A. B.或C.ABCD是矩形 D.ABCD是正方形二、填空题:本大题共6小题,每小题5分,共30分。11.函数的零点个数为__________.12.在中,角的对边分别为,若面积,则角__________.13.设向量,且,则__________.14.在等差数列中,,,则.15.设向量满足,,,.若,则的最大值是________.16.两圆,相切,则实数=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.平面内给定三个向量=(3,2),=(-1,2),=(4,1).(1)求满足的实数m,n;(2)若,求实数k;18.如图,四棱锥中,底面,,,点在线段上,且.(1)求证:平面;(2)若,,,求四棱锥的体积;19.如图所示,在四棱锥P-ABCD中,,,,平面底面ABCD,E和F分别是CD和PC的中点.求证:(1)平面BEF;(2)平面平面PCD.20.(1)若对任意的,总有成立,求常数的值;(2)在数列中,,求通项;(3)在(2)的条件下,设,从数列中依次取出第项,第项,第项,按原来的顺序组成新数列,其中试问是否存在正整数,使得且成立?若存在,求出的值;若不存在,说明理由.21.请你帮忙设计2010年玉树地震灾区小学的新校舍,如图,在学校的东北力有一块地,其中两面是不能动的围墙,在边界内是不能动的一些体育设施.现准备在此建一栋教学楼,使楼的底面为一矩形,且靠围墙的方向须留有5米宽的空地,问如何设计,才能使教学楼的面积最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由已知可得an﹣an﹣1=2,或an=2an﹣1,结合等差数列和等比数列的定义,可得答案.【详解】∵数列{an}对任意n≥2(n∈N)满足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差为2的等差数列,正确;②{an}可以是公比为2的等比数列,正确;③若{an}既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,当数列为:1,3,6,8,16……得{an}既不是等差也不是等比数列,故④正确;故选C.【点睛】本题以命题的真假判断与应用为载体,考查了等差,等比数列的相关内容,属于中档题.2、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.3、D【解析】
根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能在平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能平行,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选D.【点睛】本小题主要考查空间线、面位置关系的判断,属于基础题.4、D【解析】
将原不等式化简后,根据不等式的解集列方程组,求得的值,进而求得的值.【详解】由得,依题意上述不等式的解集为,故,解得(舍去),故.故选:D.【点睛】本小题主要考查类似:已知一元二次不等式解集求参数,考查函数与方程的思想,属于基础题.5、B【解析】
推导出数列是等差数列,由解得,由此利用能求出的值.【详解】数列的前项和为,且数列是等差数列解得解得故选:【点睛】本题考查等差数列的判定和基本量的求解,属于基础题.6、B【解析】
根据分析得出点的轨迹为线段,结合图形即可得到的最大值.【详解】如图:取,,,点是内(包括边界)的一动点,且,根据平行四边形法则,点的轨迹为线段,则的最大值是,在中,,,,,故选:B【点睛】此题考查利用向量方法解决平面几何中的线段长度最值问题,数形结合处理可以避免纯粹的计算,降低难度.7、A【解析】
由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。8、B【解析】
将函数零点转化的解,利用韦达定理和差公式得到,得到答案.【详解】的零点是方程的解即均为锐角故答案为B【点睛】本题考查了函数零点,韦达定理,和差公式,意在考查学生的综合应用能力.9、A【解析】
由已知利用垂径定理求得,得到圆的半径,画出图形,由扇形面积减去三角形面积求解.【详解】解:直线方程为,圆的圆心坐标为,半径为.圆心到直线的距离.则,解得.圆的圆心坐标为,半径为1.如图,,则,.,,圆在轴下方部分与轴围成的图形的面积等于.故选:.【点睛】本题考查直线与圆位置关系的应用,考查扇形面积的求法,考查计算能力,属于中档题.10、C【解析】
由,化简可得,得到,又由四边形为平行四边形,即可得到答案.【详解】由,则,即,化简可得,所以,即,又由四边形为平行四边形,所以该四边形为矩形,故选C.【点睛】本题主要考查了向量的基本运算,以及向量的垂直关系的应用,其中解答中熟记向量的基本运算,以及向量的垂直的判定是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
运用三角函数的诱导公式先将函数化简,再在同一直角坐标系中做出两支函数的图像,观察其交点的个数即得解.【详解】由三角函数的诱导公式得,所以令,求零点的个数转化求方程根的个数,因此在同一直角坐标系分别做出和的图象,观察两支图象的交点的个数为个,注意在做的图像时当时,,故得解.【点睛】本题考查三角函数的有界性和余弦函数与对数函数的交点情况,属于中档题.12、【解析】
根据面积公式计算出的值,然后利用反三角函数求解出的值.【详解】因为,所以,则,则有:.【点睛】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.13、【解析】因为,所以,故答案为.14、8【解析】
设等差数列的公差为,则,所以,故答案为8.15、【解析】
令,计算出模的最大值即可,当与同向时的模最大.【详解】令,则,因为,所以当,,因此当与同向时的模最大,【点睛】本题主要考查了向量模的计算,以及二次函数在给定区间上的最值.整体换元的思想,属于较的难题,在解二次函数的问题时往往结合图像、开口、对称轴等进行分析.16、0,±2【解析】
根据题意,由圆的标准方程分析两圆的圆心与半径,分两圆外切与内切两种情况讨论,求出a的值,综合即可得答案.【详解】根据题意:圆的圆心为(0,0),半径为1,圆的圆心为(﹣4,a),半径为5,若两圆相切,分2种情况讨论:当两圆外切时,有(﹣4)2+a2=(1+5)2,解可得a=±2,当两圆内切时,有(﹣4)2+a2=(1﹣5)2,解可得a=0,综合可得:实数a的值为0或±2;故答案为0或±2.【点睛】本题考查圆与圆的位置关系,关键是掌握圆与圆的位置关系的判定方法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由及已知得,由此列方程组能求出实数;(2)由,可得,由此能求出的值.【详解】(1)由题意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=.【点睛】本题主要考查相等向量与共线向量的性质,属于简单题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.18、(1)证明见解析(2)【解析】
(1)根据底面证得,证得,由此证得平面.(2)利用锥体体积公式,计算出所求锥体体积.【详解】(1)证明:底面,平面,,,,,又,平面,平面,平面.(2),,,∴四边形是矩形,,,又,,,即,.【点睛】本小题主要考查线面垂直的证明,考查锥体体积计算,考查空间想象能力和逻辑推理能力,属于基础题.19、(2)证明见解析(2)证明见解析【解析】
(1)连接,交于,结合平行四边形的性质可得,再由线面平行的判定定理,即可得证(2)运用面面垂直的性质定理可得平面,推得,,,再由线面垂直的判定定理和吗垂直的判定定理,即可得证.【详解】证明:(1)连接,交于,可得四边形为平行四边形,且为的中点,可得为的中位线,可得,平面,面,可得面;(2)平面底面,,可得平面,即有,,可得,由,,可得四边形为矩形,即有,又,,可得,且所以有平面,而平面,则平面平面.【点睛】本题考查线面平行和面面垂直的判定,注意运用线线平行和线面垂直的判定定理,考查推理能力,属于中档题.20、(1)(2)(3)存在,,或【解析】
由题设得恒成立,所以,由和知,,且,由此能推导出假设存在正整数m,r满足题设,由,,又得,于是,由此能推导出存在正整数m,r满足题设,,或,.【详解】由题设得,即恒成立,所以,由题设又由得,,且,即是首项为1,公比为2的等比数列,所以即为所求.假设存在正整数m,r满足题设,由知,显然,又得,,即是以为首项,为公比的等比数列.于是,由得,m,,所以或15,当时,,;当时,,;综上,存在正整数m,r满足题设,,或,【点睛】本题主要考查了数列中参数的求法、等差数列的通项公式和以极限为载体考查数列性质的综合运用,属于难题.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中间差价协议书(2篇)
- 2024年度餐厅广告宣传推广合同
- 2024年度武汉市保安服务外包合同
- 04版玻璃纤维增强塑料采购与安装合同
- 边缘计算应用-第1篇
- 跨国投资风险管理研究
- 2024年度社保代缴与员工关系合同
- 货运行业风险评估
- 2024版数据中心服务合同
- 2024年度货物买卖合同范例
- 常年马铃薯种薯买卖合同
- 高中期中考试家长会发言稿范文(15篇)
- 2024年【一级注册建筑师】考试题库及答案(夺冠)
- 消防应急疏散预案培训
- 2024-2030年中国旅游演出行业前景预测及投资运作模式分析报告版
- 2024-2025学年五年级上册数学人教版期中综合练习(1~4单元)
- 房地产市场报告 -【成都】【锐理】2024年10月丨房地产市场月报
- 常用玻璃仪器操作规范课件
- 苏教版(2024新版)一年级上册科学全册教案教学设计
- 创新创业实训智慧树知到期末考试答案章节答案2024年西安理工大学
- 大学生国家安全教育智慧树知到期末考试答案2024年
评论
0/150
提交评论