版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市八校高一下数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.正项等比数列与等差数列满足,,,则的大小关系为()A. B. C. D.不确定2.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.3.若圆与圆外切,则()A.21 B.19 C.9 D.-114.已知点,直线方程为,且直线与线段相交,求直线的斜率k的取值范围为()A.或 B.或C. D.5.已知分别是的内角的的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形6.若x+2y=4,则2x+4y的最小值是()A.4 B.8 C.2 D.47.己知向量,.若,则m的值为()A. B.4 C.- D.-48.在明朝程大位《算法统宗》中,有这样一首歌谣,叫浮屠增级歌:远看巍巍塔七层,红光点点倍加增;共灯三百八十一,请问层三几盏灯.这首古诗描述的浮屠,现称宝塔.本浮屠增级歌意思是:有一座7层宝塔,每层悬挂的红灯数是上一层的2倍,宝塔中共有灯381盏,问这个宝塔第3层灯的盏数有()A. B. C. D.9.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.10.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,为内一点,且,延长交于点,若,则实数的值为_______.12.方程的解集是__________.13.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.14.已知的圆心角所对的弧长等于,则该圆的半径为______.15.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________.16.己知数列满足就:,,若,写出所有可能的取值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中,内角,,所对的边分别是,,,已知.(1)求角的大小;(2)设,的面积为,求的值.18.已知数列的前项和为,对任意满足,且,数列满足,,其前9项和为63.(1)求数列和的通项公式;(2)令,数列的前项和为,若存在正整数,有,求实数的取值范围;(3)将数列,的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:…,求这个新数列的前项和.19.的内角,,的对边分别为,,,设.(1)求;(2)若,求.20.有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中画出频率分布直方图.21.设函数.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用分析的关系即可.【详解】因为正项等比数列与等差数列,故又,当且仅当时“=”成立,又即,故,故选:B【点睛】本题主要考查等差等比数列的性质与基本不等式的“一正二定三相等”.若是等比数列,且,则若是等差数列,且,则2、B【解析】
依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【详解】设阴影区域的面积为,由题意可得,则.故选:B.【点睛】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.3、C【解析】试题分析:因为,所以且圆的圆心为,半径为,根据圆与圆外切的判定(圆心距离等于半径和)可得,故选C.考点:圆与圆之间的外切关系与判断4、A【解析】
先求出线段的方程,得出,在直线的方程中得到,将代入的表达式,利用不等式的性质求出的取值范围.【详解】易求得线段的方程为,得,由直线的方程得,当时,,此时,;当时,,此时,.因此,实数的取值范围是或,故选A.【点睛】本题考查斜率取值范围的计算,可以利用数形结合思想,观察倾斜角的变化得出斜率的取值范围,也可以利用参变量分离,得出斜率的表达式,利用不等式的性质得出斜率的取值范围,考查计算能力,属于中等题.5、A【解析】
由已知结合正弦定理可得利用三角形的内角和及诱导公式可得,整理可得从而有结合三角形的性质可求【详解】解:是的一个内角,,由正弦定理可得,又,,即为钝角,故选A.【点睛】本题主要考查了正弦定理,三角形的内角和及诱导公式,两角和的正弦公式,属于基础试题.6、B【解析】试题分析:由,当且仅当时,即等号成立,故选B.考点:基本不等式.7、B【解析】
根据两个向量垂直的坐标表示列方程,解方程求得的值.【详解】依题意,由于,所以,解得.故选B.【点睛】本小题主要考查两个向量垂直的坐标表示,考查向量减法的坐标运算,属于基础题.8、C【解析】
先根据等比数列的求和公式求出首项,再根据通项公式求解.【详解】从第1层到塔顶第7层,每层的灯数构成一个等比数列,公比为,前7项的和为381,则,得第一层,则第三层,故选【点睛】本题考查等比数列的应用,关键在于理解题意.9、D【解析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.10、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,得,可得出,再利用、、三点共线的向量结论得出,可解出实数的值.【详解】由,得,可得出,由于、、三点共线,,解得,故答案为.【点睛】本题考查三点共线问题的处理,解题的关键就是利用三点共线的向量等价条件的应用,考查运算求解的能力,属于中等题.12、【解析】
令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.13、117【解析】
由成等比数列求出公差,由前项公式求和.【详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【点睛】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.14、【解析】
先将角度化为弧度,再根据弧长公式求解.【详解】解:圆心角,弧长为,,即该圆的半径长.故答案为:.【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.15、【解析】试题分析:根据正余弦函数的定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.16、【解析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=5三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)利用正弦定理可将已知等式化为,利用两角和差余弦公式展开整理可求得,根据可求得结果;(2)利用三角形面积公式可构造方程求出;利用余弦定理可直接求得结果.【详解】(1)由正弦定理可得:,即(2)设的面积为,则由得:,解得:由余弦定理得:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、三角形面积公式和余弦定理的应用;关键是能够通过正弦定理将边化角,得到角的一个三角函数值,从而根据角的范围求得结果.18、(1);(2);(3)【解析】试题分析:(1)由已知得数列是等差数列,从而易得,也即得,利用求得,再求得可得数列通项,利用已知可得是等差数列,由等差数列的基本量法可求得;(2)代入得,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值,从而得的范围,研究的单调性可得;(3)根据新数列的构造方法,在求新数列的前项和时,对分类:,和三类,可求解.试题解析:(1)∵,∴数列是首项为1,公差为的等差数列,∴,即,∴,又,∴.∵,∴数列是等差数列,设的前项和为,∵且,∴,∴的公差为(2)由(1)知,∴,∴设,则,∴数列为递增数列,∴,∵对任意正整数,都有恒成立,∴.(3)数列的前项和,数列的前项和,①当时,;②当时,,特别地,当时,也符合上式;③当时,.综上:考点:等差数列的通项公式,数列的单调性,数列的求和.19、(1)(2)【解析】
(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.20、(1)见解析;(2)见解析【解析】
(1)通过所给数据算出频数和频率值,并填入表格中;(2)计算每组数中的频率除以组距的值,再画出直方图.【详解】(1)频率分布表如下:分组频数频率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.45)10.1合计101.0(2)频率分布直方图如图所示:【点睛】本题考查频率分布表和频率分布直方图的简
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度知识产权许可使用合同(含知识产权名称、许可范围、许可期限等详细条款)
- 2024年度艺术品采购与展览推广合同
- 2024年度健身服务合同之服务内容与会员权益2篇
- 2024年度农产品购销合同:大米、玉米、小麦等粮食作物的供销协议
- 2024年度股权转让的资产评估协议
- 《鼠标键盘使用》课件
- 2024年度虚拟现实应用合同
- 2024年度企业标志设计服务合同范本
- 《审计课堂案例》课件
- 市政道路工程
- 新版电力设备预防性试验规程
- 合同Amazon电子商务代运营合作协议
- 聂荣臻将军:中国人民解放军的奠基人之一
- 间质性肺炎护理查房
- 高中数学联赛之历年真题分类汇编(2015-2021):专题34不等式第三缉(原卷版)
- 生态环境管理与规划教材课件
- 产业研究报告-2024年中国偏三甲苯行业发展现状、市场规模、投资前景分析
- 科技英语表达常用句型速查
- 2022年上海外国语大学三亚附属中学招聘考试真题
- 园区开展安全生产大检查工作总结
- 小批量试产报告1
评论
0/150
提交评论