版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届豫南九校数学高一下期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平行四边形中,,若点满足且,则A.10 B.25 C.12 D.152.在△ABC中,角A,B,C所对的边分别为a,b,c,若a﹣b=ccosB﹣ccosA,则△ABC的形状为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形3.已知非零向量、,“函数为偶函数”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件4.直线倾斜角的范围是()A.(0,] B.[0,] C.[0,π) D.[0,π]5.P是直线x+y+2=0上任意一点,点Q在圆x-22+yA.2 B.4-2 C.4+26.由小到大排列的一组数据,,,,,其中每个数据都小于,那么对于样本,,,,,的中位数可以表示为()A. B. C. D.7.=()A. B. C. D.8.已知等差数列的前项和为,若,则()A.18 B.13 C.9 D.79.已知是平面内两个互相垂直的向量,且,若向量满足,则的最大值是()A.1 B. C.3 D.10.数列1,3,6,10,…的一个通项公式是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则_______________.12.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________.13.方程在上的解集为______.14.如图,将全体正整数排成一个三角形数阵,按照这样的排列规律,第行从右至左的第3个数为___________.15.设表示不超过的最大整数,则________16.已知数列从第项起每项都是它前面各项的和,且,则的通项公式是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列满足,,等差数列满足,,求数列的前项和.18.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.19.给定常数,定义函数,数列满足.(1)若,求及;(2)求证:对任意,;(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.20.已知函数.(1)求函数的最小正周期和单调增区间;(2)求函数在区间上的最小值以及取得该最小值时的值.21.己知,,且函数的图像上的任意两条对称轴之间的距离的最小值是.(1)求的值:(2)将函数的图像向右平移单位后,得到函数的图像,求函数在上的最值,并求取得最值时的的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先由题意,用,表示出,再由题中条件,根据向量数量积的运算,即可求出结果.【详解】因为点满足,所以,则故选C.【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理以及数量积的运算法则即可,属于常考题型.2、D【解析】
用正弦定理化边为角,再由诱导公式和两角和的正弦公式化简变形可得.【详解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故选:D.【点睛】本题考查正弦定理,考查三角形形状的判断.解题关键是诱导公式的应用.3、C【解析】
根据,求出向量的关系,再利用必要条件和充分条件的定义,即可判定,得到答案.【详解】由题意,函数,又为偶函数,所以,则,即,可得,所以,若,则,所以,则,所以函数是偶函数,所以“函数为偶函数”是“”的充要条件.故选C.【点睛】本题主要考查了向量的数量积的运算,函数奇偶性的定义及其判定,以及充分条件和必要条件的判定,着重考查了推理与运算能力,属于基础题.4、C【解析】试题分析:根据直线倾斜角的定义判断即可.解:直线倾斜角的范围是:[0,π),故选C.5、D【解析】
首先求出圆心到直线的距离与半径比较大小,得到直线与圆是相离的,根据圆上的点到直线的距离的最小值等于圆心到直线的距离减半径,求得结果.【详解】因为圆心(2,0)到直线x+y+2=0的距离为d=2+0+2所以直线x+y+2=0与圆(x-2)2所以PQ的最小值等于圆心到直线的距离减去半径,即PQmin故选D.【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,点到直线的距离公式,圆上的点到直线的距离的最小值问题,属于简单题目.6、C【解析】
根据不等式的基本性质,对样本数据按从小到大排列为,取中间的平均数.【详解】,,则该组样本的中位数为中间两数的平均数,即.【点睛】考查基本不等式性质运用和中位数的定义.7、A【解析】
试题分析:由诱导公式,故选A.考点:诱导公式.8、B【解析】
利用等差数列通项公式、前项和列方程组,求出,.由此能求出.【详解】解:等差数列的前项和为,,,,解得,..故选:.【点睛】本题考查等差数列第7项的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.9、D【解析】
设出平面向量的夹角,求出的夹角,最后利用平面向量数量积的运算公式进行化简等式,最后利用辅助角公式求出的最大值.【详解】设平面向量的夹角为,因为是平面内两个互相垂直的向量,所以平面向量的夹角为,因为是平面内两个互相垂直的向量,所以.,,,其中,显然当时,有最大值,即.故选:D【点睛】本题考查平面向量数量积的性质及运算,属于中档题.10、C【解析】
试题分析:可采用排除法,令和,验证选项,只有,使得,故选C.考点:数列的通项公式.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】
试题分析:由题意得,为等差数列时,一定为等差中项,即,为等比数列时,-2为等比中项,即,所以.考点:等差,等比数列的性质12、【解析】试题分析:根据正余弦函数的定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.13、【解析】
由求出的取值范围,由可得出的值,从而可得出方程在上的解集.【详解】,,由,得.,解得,因此,方程在上的解集为.故答案为:.【点睛】本题考查正切方程的求解,解题时要求出角的取值范围,考查计算能力,属于基础题.14、【解析】
由题可以先算出第行的最后一个数,再从右至左算出第3个数即可.【详解】由图得,第行有个数,故前行一共有个数,即第行最后一个数为,故第行从右至左的第3个数为.【点睛】本题主要考查等差数列求和问题,注意从右至左的第3个数为最后一个数减2.15、【解析】
根据1弧度约等于且正弦函数值域为,故可分别计算求和中的每项的正负即可.【详解】故答案为:【点睛】本题主要考查了三角函数的计算,属于基础题型.16、【解析】
列举,可找到是从第项起的等比数列,由首项和公比即可得出通项公式.【详解】解:,即,所以是从第项起首项,公比的等比数列.通项公式为:故答案为:【点睛】本题考查数列的通项公式,可根据递推公式求出.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
由等比数列易得公比和,进而可得等差数列的首项和公差,代入求和公式计算可得.【详解】解:∵等比数列满足,,
∴公比,
,
,
∴等差数列中,
∴公差,
∴数列的前项和.【点睛】本题考查等差数列的求和公式,涉及等比数列的通项公式,求出数列的首项和公差是解决问题的关键,属基础题.18、(1)或;(2).【解析】
(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a即可.【详解】(1)由圆的方程得到圆心,半径.当直线斜率不存在时,直线与圆显然相切;当直线斜率存在时,设所求直线方程为,即,由题意得:,解得,∴方程为,即.故过点且与圆相切的直线方程为或.(2)∵弦长为,半径为2.圆心到直线的距离,∴,解得.【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力.19、见解析【解析】(1)因为,,故,(2)要证明原命题,只需证明对任意都成立,即只需证明若,显然有成立;若,则显然成立综上,恒成立,即对任意的,(3)由(2)知,若为等差数列,则公差,故n无限增大时,总有此时,即故,即,当时,等式成立,且时,,此时为等差数列,满足题意;若,则,此时,也满足题意;综上,满足题意的的取值范围是.【考点定位】考查数列与函数的综合应用,属难题.20、(1)最小正周期为,单调递增区间为;(2)当时,函数取最小值.【解析】
(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可求得函数的单调递增区间;(2)由计算出的取值范围,再利用正弦函数的基本性质可求得该函数的最小值及其对应的值.【详解】(1),所以,函数的最小正周期为;令,得,所以函数的单调增区间为;(2)当时,,所以,当时,即当时,取得最小值,所以,函数在区间上的最小值为,此时.【点睛】本题考查正弦型函数的最小正周期和单调区间、最值的求解,解答的关键就是利用三角恒等变换思想化简函数解析式,考查计算能力,属于中等题.21、(1)1;(1)此时,此时【解析】
(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,从而求得f()的值.(1)由条件利用函数y=Asin(ωx+)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[]上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度影视发行合同服务条款
- 2023年企业财务会计辅导资料
- 2024年度深圳停车场经营权转让合同
- 2024年度饮用纯净水公共卫生安全监测合同
- 界桩采购合同范本
- 二零二四年度农业种植与销售承包合同
- 二零二四年度旅游服务合同标的及行程安排
- 2024版采砂项目工程设计与施工合同
- 2024版虚拟现实技术开发合同
- 二零二四年度互联网信息服务承包合同
- 中国传统民居建筑.课件
- 光的偏振性 马吕斯定律
- 硫酸铵简介介绍
- 测控专业职业规划书
- 音乐游戏在小学音乐课堂教学中的应用策略研究
- 54 美丽的小兴安岭(第一课时) 逐字稿 三年级上册语文 国家中小学智慧教育平台
- 如何在小学语文教学中培养学生的人文素养获奖科研报告
- 2024届高考英语作文复习专项 读后续写写作入门指导课件
- 2024届高考语文复习:二元思辨作文审题立意讲解 课件
- 《伐檀》名师课堂
- 幼儿园优质公开课:小班数学《开心果园(5以内的点数)》课件
评论
0/150
提交评论