2025届山东青岛平度第三中学高一下数学期末质量跟踪监视模拟试题含解析_第1页
2025届山东青岛平度第三中学高一下数学期末质量跟踪监视模拟试题含解析_第2页
2025届山东青岛平度第三中学高一下数学期末质量跟踪监视模拟试题含解析_第3页
2025届山东青岛平度第三中学高一下数学期末质量跟踪监视模拟试题含解析_第4页
2025届山东青岛平度第三中学高一下数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东青岛平度第三中学高一下数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则的最小值为()A. B. C.7 D.92.若直线与曲线有公共点,则的取值范围是()A. B.C. D.3.在正方体中,异面直线与所成的角为()A.30° B.45° C.60° D.90°4.已知是等差数列,,其前10项和,则其公差A. B. C. D.5.甲箱子里装有个白球和个红球,乙箱子里装有个白球和个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为,摸出的红球的个数为,则()A.,且 B.,且C.,且 D.,且6.已知角的顶点在坐标原点,始边与x轴正半轴重合,将终边按逆时针方向旋转后,终边经过点,则()A. B. C. D.7.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.8.等差数列满足,则其前10项之和为()A.-9 B.-15 C.15 D.9.已知各项为正数的等比数列中,,,则公比q=A.4 B.3 C.2 D.10.在中,,且,若,则()A.2 B.1 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,若,则实数_______.12.如图,已知,,任意点关于点的对称点为,点关于点的对称点为,则向量_______(用,表示向量)13.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.14.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.04,出现丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为________.15.中,,则A的取值范围为______.16.方程的解为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点在原点,始边与轴的非负半轴重合,终边上一点的坐标是.(1)求;(2)求;18.已知点,,动点满足,记M的轨迹为曲线C.(1)求曲线C的方程;(2)过坐标原点O的直线l交C于P、Q两点,点P在第一象限,轴,垂足为H.连结QH并延长交C于点R.(i)设O到直线QH的距离为d.求d的取值范围;(ii)求面积的最大值及此时直线l的方程.19.如图,在四棱锥P‐ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,E为PD的中点.求证:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.20.在边长为2的菱形中,,为的中点.(1)用和表示;(2)求的值.21.已知方程有两个实根,记,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据条件可知,,,从而得出,这样便可得出的最小值.【详解】;,且,;;,当且仅当时等号成立;;的最小值为.故选:.【点睛】考查基本不等式在求最值中的应用,注意应用基本不等式所满足的条件及等号成立的条件.2、D【解析】

将本题转化为直线与半圆的交点问题,数形结合,求出的取值范围【详解】将曲线的方程化简为即表示以为圆心,以2为半径的一个半圆,如图所示:由圆心到直线的距离等于半径2,可得:解得或结合图象可得故选D【点睛】本题主要考查了直线与圆的位置关系,考查了转化能力,在解题时运用点到直线的距离公式来计算,数形结合求出结果,本题属于中档题3、C【解析】

首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接.因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.4、D【解析】,解得,则,故选D.5、D【解析】可取,;,,,,,故选D.6、B【解析】

先建立角和旋转之后得所到的角之间的联系,再根据诱导公式和二倍角公式进行计算可得.【详解】设旋转之后的角为,由题得,,,又因为,所以得,故选B.【点睛】本题考查任意角的三角函数和三角函数的性质,是基础题.7、A【解析】

先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【点睛】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.8、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.9、C【解析】

由,利用等比数列的性质,结合各项为正数求出,从而可得结果.【详解】,,,,故选C.【点睛】本题主要考查等比数列的性质,以及等比数列基本量运算,意在考查灵活运用所学知识解决问题的能力,属于简单题.10、A【解析】

取的中点,连接,根据,即可得解.【详解】取的中点,连接,在中,,且,所以,.故选:A【点睛】此题考查求向量的数量积,涉及平面向量的线性运算,根据数量积的几何意义求解,可以简化计算.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.12、【解析】

先求得,然后根据中位线的性质,求得.【详解】依题意,由于分别是线段的中点,故.【点睛】本小题主要考查平面向量减法运算,考查三角形中位线,属于基础题.13、4【解析】

先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.14、0.95【解析】

根据抽查一件产品是甲级品、乙级品、丙级品是互为互斥事件,且三个事件对立,再根据抽得正品即为抽得甲级品的概率求解.【详解】记事件A={甲级品},B={乙级品},C={丙级品}因为事件A,B,C互为互斥事件,且三个事件对立,所以抽得正品即为抽得甲级品的概率为故答案为:0.95【点睛】本题主要考查了互斥事件和对立事件概率的求法,还考查了运算求解的能力,属于基础题.15、【解析】

由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为,然后用余弦定理推论可求,进而根据余弦函数的图像性质可求得角A的取值范围.【详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因为,所以.【点睛】在三角形中,已知边和角或边、角关系,求角或边时,注意正弦、余弦定理的运用.条件只有角的正弦时,可用正弦定理的推论,将角化为边.16、或【解析】

由指数函数的性质得,由此能求出结果.【详解】方程,,或,解得或.故答案为或.【点睛】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)求得点到原点的距离,根据三角函数的定义求值;(2)同(1)可求出,然后用诱导公式化简,再代入值计算.【详解】(1)(2),为第四象限,【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.18、(1);(2)(i)(ii)面积最大值为,直线的方程为.【解析】

(1)根据题意列出方程求解即可(2)联立直线与圆的方程,得出P、Q、H三点坐标,表示出QH直线方程,采用点到直线距离公式求解;利用圆的几何关系,表示出三角形的底和高,再结合函数最值问题进行求解【详解】(1)由及两点距离公式,有,化简整理得,.所以曲线C的方程为;(2)(i)设直线l的方程为;将直线l的方程与圆C的方程联立,消去y,得(,解得因此,,,所以直线QH的方程为.到直线QH的距离,当时.,所以,(ii)过O作于D,则D为QR中点,且由(i)知,,,又由,故的面积,由,有,所以,当且仅当时,等号成立,且此时由(i)有,即.综上,的面积最大值为的面积最大值为,且当面积最大时直线的方程为.【点睛】直线与圆的综合类题型常采用点到直线距离公式、圆内构造的直角三角形,将代数问题与几何问题进行有效结合,可大大降低解题难度.19、(1)详证见解析;(2)详证见解析.【解析】

(1)可通过连接交于,通过中位线证明和平行得证平面.(2)可通过正方形得证,通过平面得证,然后通过线面垂直得证面面垂直.【详解】(1)证明:连交于O,因为四边形是正方形,所以,连,则是三角形的中位线,,平面,平面所以平面.(2)因为平面,所以,因为是正方形,所以,所以平面,所以平面平面.【点睛】证明线面平行可通过线线平行得证,证明面面垂直可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论