四川省成都外国语高级中学2025届高一数学第二学期期末考试模拟试题含解析_第1页
四川省成都外国语高级中学2025届高一数学第二学期期末考试模拟试题含解析_第2页
四川省成都外国语高级中学2025届高一数学第二学期期末考试模拟试题含解析_第3页
四川省成都外国语高级中学2025届高一数学第二学期期末考试模拟试题含解析_第4页
四川省成都外国语高级中学2025届高一数学第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都外国语高级中学2025届高一数学第二学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a42.若直线平分圆的周长,则的值为()A.-1 B.1 C.3 D.53.已知数列满足,,则的值为()A. B. C. D.4.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆5.已知、是不重合的平面,a、b、c是两两互不重合的直线,则下列命题:①;②;③.其中正确命题的个数是()A.3 B.2 C.1 D.06.在中,角的对边分别是,若,且三边成等比数列,则的值为()A. B. C.1 D.27.已知是非零向量,若,且,则与的夹角为()A. B. C. D.8.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的是()A.29 B.17 C.12 D.59.若集合A=α|α=π6+kπ,k∈ZA.ϕ B.π6 C.-π10.下列函数中,在区间上是减函数的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.12.圆锥的底面半径是3,高是4,则圆锥的侧面积是__________.13.若一个圆锥的高和底面直径相等且它的体积为,则此圆锥的侧面积为______.14.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.15.如图,在中,,,点D为BC的中点,设,.的值为___________.16.已知P1(x1,y1),P2(x2,y2)是以原点O为圆心的单位圆上的两点,∠P1OP2=θ(θ为钝角).若,则x1x2+y1y2的值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,其中向量,.(1)求函数的最小正周期与单调递减区间;(2)在中,、、分别是角、、的对边,已知,,的面积为,求外接圆半径.18.已知数列的前项和为.(Ⅰ)当时,求数列的通项公式;(Ⅱ)当时,令,求数列的前项和.19.在中,,且边上的中线长为,(1)求角的大小;(2)求的面积.20.求函数的单调递增区间.21.如图,在平面直角坐标系中,单位圆上存在两点,满足均与轴垂直,设与的面积之和记为.若,求的值;若对任意的,存在,使得成立,且实数使得数列为递增数列,其中求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,

在验证时,把当代入,左端.

故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.2、D【解析】

求出圆的圆心坐标,由直线经过圆心代入解得.【详解】解:所以的圆心为因为直线平分圆的周长所以直线过圆心,即解得,故选:D.【点睛】本题考查直线与圆的位置关系的综合应用,属于基础题.3、B【解析】

由,得,然后根据递推公式逐项计算出、的值,即可得出的值.【详解】,,则,,,因此,,故选B.【点睛】本题考查数列中相关项的计算,解题的关键就是递推公式的应用,考查计算能力,属于基础题.4、D【解析】原方程即即或故原方程表示两个半圆.5、C【解析】

由面面垂直的判定定理,可得①正确;利用列举所有可能,即可判断②③错误.【详解】①由面面垂直的判定定理,∵,a⊂β,∴α⊥β,故正确;

②,则平行,相交,异面都有可能,故不正确;

③,则与α平行,相交都有可能,故不正确.

故选:C.【点睛】本题主要考查线面关系的判断,考查的空间想象能力,属于基础题.判断线面关系问题首先要熟练掌握有关定理、推论,其次可以利用特殊位置排除错误结论.6、C【解析】

先利用正弦定理边角互化思想得出,再利余弦定理以及条件得出可得出是等边三角形,于此可得出的值.【详解】,由正弦定理边角互化的思想得,,,,则.、、成等比数列,则,由余弦定理得,化简得,,则是等边三角形,,故选C.【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.7、D【解析】

由得,这样可把且表示出来.【详解】∵,∴,,∴,∴,故选D.【点睛】本题考查向量的数量积,掌握数量积的定义是解题关键.8、B【解析】

根据程序框图依次计算得到答案.【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.9、B【解析】

先化简集合A,B,再求A∩B.【详解】由题得B={x|-1≤x≤3},A=⋯所以A∩B=π故选:B【点睛】本题主要考查一元二次不等式的解法和集合的交集运算,意在考查学生对这些知识的理解掌握水平,属于基础题,10、C【解析】

根据初等函数的单调性对各个选项的函数的解析式进行逐一判断【详解】函数在单调递增,在单调递增.

在单调递减,在单调递增.故选:C【点睛】本题主要考查了基本初等函数的单调性的判断,属于基础试题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.12、【解析】分析:由已知中圆锥的底面半径是,高是,由勾股定理,我们可以计算出圆锥的母线长,代入圆锥侧面积公式,即可得到结论.详解:圆锥的底面半径是,高是,圆锥的母线长,则圆锥侧面积公式,故答案为.点睛:本题主要考查圆锥的性质与圆锥侧面积公式,意在考查对基本公式的掌握与理解,属于简单题.13、【解析】

先由圆锥的体积公式求出圆锥的底面半径,再结合圆锥的侧面积公式求解即可.【详解】解:设圆锥的底面半径为,则圆锥的高为,母线长为,由圆锥的体积为,则,即,则此圆锥的侧面积为.故答案为:.【点睛】本题考查了圆锥的体积公式,重点考查了圆锥的侧面积公式,属基础题.14、【解析】

直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.15、【解析】

在和在中,根据正弦定理,分别表示出.由可得等式,代入已知条件化简即可得解.【详解】在中,由正弦定理可得,则在中,由正弦定理可得,则点D为BC的中点,则所以因为,,由诱导公式可知代入上述两式可得所以故答案为:【点睛】本题考查了正弦定理的简单应用,属于基础题.16、-【解析】

先利用平面向量数量积的定义和坐标运算得到,再利用两角和的正弦公式和平方关系进行求解.【详解】根据题意知,又P1,P2在单位圆上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ为钝角,联立①②求得cosθ=-.【点睛】本题主要考查平面向量的数量积定义和坐标运算、两角和的正弦公式,意在考查学生的逻辑思维能力和基本运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),的单调递减区间是;(2).【解析】试题分析:(1)用坐标表示向量条件,代入函数解析式中,运用向量的坐标运算法则求出函数解析式并应用二倍角公式以及两角和的正弦公式化简函数解析式,由三角函数的性质可求函数的最小正周期及单调递减区间;(2)将条件代入函数解析式可求出角,由三角形面积公式求出边,再由余弦定理求出边,再由正弦定理可求外接圆半径.试题解析:(1)由题意得:.所以,函数的最小正周期为,由得函数的单调递减区间是(2),解得,又的面积为.得.再由余弦定理,解得,即△为直角三角形.考点:1.向量坐标运算;2.三角函数图象与性质;3.正弦定理与余弦定理.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用的方法,进行求解即可(Ⅱ)仍然使用的方法,先求出,然后代入,并化简得,然后利用裂项求和,求出数列的前项和【详解】解:(Ⅰ)数列的前项和为①.当时,,当时,②,①﹣②得:,(首相不符合通项),所以:(Ⅱ)当时,①,当时,②,①﹣②得:,所以:令,所以:,则:【点睛】本题考查求数列通项的求法的应用,以及利用裂项求和法进行求和,属于基础题19、(Ⅰ);(Ⅱ).【解析】

(1)本题可根据三角函数相关公式将化简为,然后根据即可求出角的大小;(2)本题首先可设的中点为,然后根据向量的平行四边形法则得到,再然后通过化简计算即可求得,最后通过三角形面积公式即可得出结果.【详解】(1)由正弦定理边角互换可得,所以.因为,所以,即,即,整理得.因为,所以,所以,即,所以.因为,所以,即.(2)设的中点为,根据向量的平行四边形法则可知所以,即,因为,,所以,解得(负值舍去).所以.【点睛】本题考查三角恒等变换公式及解三角形相关公式的应用,考查了向量的平行四边形法则以及向量的运算,考查了化归与转化思想,体现了综合性,是难题.20、()【解析】

先化简函数得到,再利用复合函数单调性原则结合整体法求单调区间即可.【详解】,令,则,因为是的一次函数,且在定义域上单调递增,所以要求的单调递增区间,即求的单调递减区间,即(),∴(),即(),∴函数的单调递增区间为().【点睛】本题考查求复合型三角函数的单调区间,答题时注意,复合函数的单调性遵循“同增异减”法则.21、(1)或(2)【解析】

(1)运用三角形的面积公式和三角函数的和差公式,以及特殊角的函数值,可得所求角;(2)由正弦函数的值域可得的最大值,再由基本不等式可得的最大值,可得的范围,再由数列的单调性,讨论的范围,即可得到的取值范围.【详解】依题意,可得,由,得,又,所以.由得因为,所以,所以,当时,,(当且仅当时,等号成立)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论