版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省农兴中学2025届高一数学第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是连续的偶函数,且时,是单调函数,则满足的所有之积为()A. B. C. D.2.在面积为S的平行四边形ABCD内任取一点P,则三角形PBD的面积大于的概率为()A. B. C. D.3.若,,则()A. B. C. D.4.已知是第三象限的角,若,则A. B. C. D.5.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.6.已知,下列不等式中必成立的一个是()A. B. C. D.7.设点是棱长为的正方体的棱的中点,点在面所在的平面内,若平面分别与平面和平面所成的锐二面角相等,则点到点的最短距离是()A. B. C. D.8.已知直线的方程为,,则直线的倾斜角范围()A. B.C. D.9.如果存在实数,使成立,那么实数的取值范围是()A. B.或C.或 D.或10.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边上一点P的坐标为,则____.12.已知扇形的圆心角为,半径为5,则扇形的弧长_________.13.已知是等比数列,,,则公比______.14.已知,是夹角为的两个单位向量,向量,,若,则实数的值为________.15.如图,缉私艇在处发现走私船在方位角且距离为12海里的处正以每小时10海里的速度沿方位角的方向逃窜,缉私艇立即以每小时14海里的速度追击,则缉私艇追上走私船所需要的时间是__________小时.16.若,则__________.(结果用反三角函数表示)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的面积18.为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率19.若向量=(1,1),=(2,5),=(3,x).(1)若,求x的值;(2)若,求x的值.20.已知定点,点A在圆上运动,M是线段AB上的一点,且,求出点M所满足的方程,并说明方程所表示的曲线是什么.21.已知两点,.(1)求直线AB的方程;(2)直线l经过,且倾斜角为,求直线l与AB的交点坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由y=f(x+2)为偶函数分析可得f(x)关于直线x=2对称,进而分析可得函数f(x)在(2,+∞)和(﹣∞,2)上都是单调函数,据此可得若f(x)=f(1),则有x=1或4﹣x=1,变形为二次方程,结合根与系数的关系分析可得满足f(x)=f(1)的所有x之积,即可得答案.【详解】根据题意,函数y=f(x+2)为偶函数,则函数f(x)关于直线x=2对称,又由当x>2时,函数y=f(x)是单调函数,则其在(﹣∞,2)上也是单调函数,若f(x)=f(1),则有x=1或4﹣x=1,当x=1时,变形可得x2+3x﹣3=0,有2个根,且两根之积为﹣3,当4﹣x=1时,变形可得x2+x﹣13=0,有2个根,且两根之积为﹣13,则满足f(x)=f(1)的所有x之积为(﹣3)×(﹣13)=39;故选:D.【点睛】本题考查抽象函数的应用,涉及函数的对称性与单调性的综合应用,属于综合题.2、A【解析】
转化条件求出满足要求的P点的范围,求出面积比即可得解.【详解】如图,设P到BD距离为h,A到BD距离为H,则,,满足条件的点在和中,所求概率.故选:A.【点睛】本题考查了几何概型的概率计算,属于基础题.3、D【解析】
由于,,,,利用“平方关系”可得,,变形即可得出.【详解】∵,,∴,∴.∵,∴,∵,∴.∴.故选D.【点睛】本题考查了两角和的余弦公式、三角函数同角基本关系式、拆分角等基础知识与基本技能方法,属于中档题.4、D【解析】
根据是第三象限的角得,利用同角三角函数的基本关系,求得的值.【详解】因为是第三象限的角,所以,因为,所以解得:,故选D.【点睛】本题考查余弦函数在第三象限的符号及同角三角函数的基本关系,即已知值,求的值.5、A【解析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.6、B【解析】
根据不等式的性质,对选项逐一分析,由此确定正确选项.【详解】对于A选项,由于,不等号方向不相同,不能相加,故A选项错误.对于B选项,由于,所以,而,根据不等式的性质有:,故B选项正确.对于C选项,,而两个数的正负无法确定,故无法判断的大小关系,故C选项错误.对于D选项,,而两个数的正负无法确定,故无法判断的大小关系,故D选项错误.故选:B.【点睛】本小题主要考查根据不等式的性质判断不等式是否成立,属于基础题.7、B【解析】
以为原点,为轴为轴为轴,建立空间直角坐标系,计算三个平面的法向量,根据夹角相等得到关系式:,再利用点到直线的距离公式得到答案.【详解】`以为原点,为轴为轴为轴,建立空间直角坐标系.则易知:平面的法向量为平面的法向量为设平面的法向量为:则,取平面分别与平面和平面所成的锐二面角相等或看作平面的两条平行直线,到的距离.根据点到直线的距离公式得,点到点的最短距离都是:故答案为B【点睛】本题考查了空间直角坐标系,二面角,最短距离,意在考查学生的计算能力和空间想象能力.8、B【解析】
利用直线斜率与倾斜角的关系即可求解.【详解】由直线的方程为,所以,即直线的斜率,由.所以,又直线的倾斜角的取值范围为,由正切函数的性质可得:直线的倾斜角为.故选:B【点睛】本题考查了直线的斜率与倾斜角之间的关系,同时考查了正弦函数的值域以及正切函数的性质,属于基础题.9、A【解析】
根据,可得,再根据基本不等式取等的条件可得答案.【详解】因为,所以,即,即,又(当且仅当时等号成立)所以,所以.故选:A【点睛】本题考查了余弦函数的值域,考查了基本不等式取等的条件,属于中档题.10、A【解析】
根据投影公式,直接得到结果.【详解】,.故选A.【点睛】本题考查了投影公式,属于简单题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由已知先求,再由三角函数的定义可得即可得解.【详解】解:由题意可得点到原点的距离,,由三角函数的定义可得,,,此时;故答案为.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.12、【解析】
根据扇形的弧长公式进行求解即可.【详解】∵扇形的圆心角α,半径为r=5,∴扇形的弧长l=rα5.故答案为:.【点睛】本题主要考查扇形的弧长公式的计算,熟记弧长公式是解决本题的关键,属于基础题.13、【解析】
利用等比数列的性质可求.【详解】设等比数列的公比为,则,故.故答案为:【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)(为公比);(3)公比时,则有,其中为常数且;(4)为等比数列()且公比为.14、【解析】
由题意得,且,,由=,解得即可.【详解】已知,是夹角为的两个单位向量,所以,得,若解得故答案为【点睛】本题考查了向量数量积的运算性质,考查了计算能力,属于基础题.15、【解析】
设缉私艇追上走私船所需要的时间为小时,根据各自的速度表示出与,由,利用余弦定理列出关于的方程,求出方程的解即可得到的值.【详解】解:设缉私艇上走私船所需要的时间为小时,则,,在中,,根据余弦定理知:,或(舍去),故缉私艇追上走私船所需要的时间为2小时.故答案为:.【点睛】本题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握正弦、余弦定理是解本题的关键,属于中档题.16、;【解析】
由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据正弦定理把题设等式中的边换成相应角的正弦,化简整理可求得,进而求得;(2)根据余弦定理得,结合求得的值,进而由三角形的面积公式求得面积.【详解】(1)根据正弦定理,又,.(2)由余弦定理得:,代入得,故面积为【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18、(1),,,;(2)分边抽取2,3,1人;(3).【解析】
(1)根据数据表和频率分布直方图可计算得到第组的人数和频率,从而可得总人数;根据总数、频率和频数的关系,可分别计算得到所求结果;(2)首先确定第组的总人数,根据分层抽样原则计算即可得到结果;(3)首先计算得到基本事件总数;再计算出恰好没有年龄段在包含的基本事件个数,根据古典概型概率公式可求得结果.【详解】(1)第组的人数为:人,第组的频率为:第一组的频率为第一组的人数为:第二组的频率为第二组的人数为:第三组的频率为第三组的人数为:第五组的频率为第五组的人数为:(2)第组的总人数为:人第组抽取的人数为:人;第组抽取的人数为:人;第组抽取的人数为:人(3)在(2)中抽取的人中随机抽取人,基本事件总数为:所抽取的人中恰好没有年龄段在包含的基本事件个数为:所抽取的人中恰好没有年龄段在的概率:【点睛】本题考查利用频率分布直方图计算总数、频数和频率、分层抽样基本方法的应用、古典概型计算概率问题;关键是熟练掌握频率分布直方图的相关知识,能够通过频率分布直方图准确计算出各组数据对应的频率.19、(1).(2)1.【解析】
(1)利用向量平行的代数形式得到x的值;(2)由数量积的坐标形式得到x的方程,解之即可.【详解】(1)∵∥,∴2x﹣15=0,解得x=.(2)8﹣=(6,3),∵(8﹣)•=30,∴18+3x=30,解得x=1.【点睛】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.20、;方程所表示的曲线是以为圆心,为半径的圆.【解析】
设出点的坐标,结合向量的关系式及圆的方程可求.【详解】设,,因为,所以;,,因为点A在圆上运动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年软尿杯项目可行性研究报告
- 2024年中国连续式弹簧回火炉市场调查研究报告
- 《慢性咳嗽诊治》课件
- 爱岗敬业演讲稿
- 名词性从句复习课件
- 《小肝癌的CT表现》课件
- 《微格教学》课件
- 子路曾皙冉有公西华侍坐-课件
- 《工程招投标》课件
- 高一化学知识点化学物质及变化
- GB/T 41781-2022物联网面向Web开放服务的系统安全要求
- 2022年中国烟草行业信息化市场分析
- 超滤+反渗透设计方案
- 加油站年度应急预案演练计划
- 广东省综合评标专家库试题
- 外科学课件-阑尾炎
- 中学增量绩效奖励发放实施方案
- DB13(J)∕T 100-2016 建设工程安全文明工地标准
- 词汇专项训练
- 小水电站运行安全风险隐患排查整治实施方案
- 部编版七年级上册道德与法治全册教案(完整版)教学设计含教学反思
评论
0/150
提交评论