版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省定西市通渭二中2025届数学高一下期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的前项和为,,且满足,若,则的值为()A. B. C. D.2.数列的首项为,为等差数列,且(),若,,则()A. B. C. D.3.已知则()A. B. C. D.4.若向量,,则()A. B. C. D.5.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣) B.y=sin(2x+) C.y=cos2x D.y=﹣sin2x6.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng)是底面为矩形,顶部只有一条棱的五面体.如图,五面体是一个刍甍.四边形为矩形,与都是等边三角形,,,则此“刍甍”的表面积为()A. B. C. D.7.产能利用率是指实际产出与生产能力的比率,工业产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.据上述信息,下列结论中正确的是()A.2015年第三季度环比有所提高 B.2016年第一季度同比有所提高C.2017年第三季度同比有所提高 D.2018年第一季度环比有所提高8.若数列{an}是等比数列,且an>0,则数列也是等比数列.若数列是等差数列,可类比得到关于等差数列的一个性质为().A.是等差数列B.是等差数列C.是等差数列D.是等差数列9.如图,在中,,用向量,表示,正确的是A. B.C. D.10.两条平行直线与间的距离等于()A. B.2 C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足则的最小值为__________.12.关于函数f(x)=4sin(2x+)(x∈R),有下列命题:①y=f(x)的表达式可改写为y=4cos(2x﹣);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是.13.若采用系统抽样的方法从420人中抽取21人做问卷调查,为此将他们随机编号为1,2,…,420,则抽取的21人中,编号在区间[241,360]内的人数是______14.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.15.如图,点为正方形边上异于点的动点,将沿翻折成,使得平面平面,则下列说法中正确的是__________.(填序号)(1)在平面内存在直线与平行;(2)在平面内存在直线与垂直(3)存在点使得直线平面(4)平面内存在直线与平面平行.(5)存在点使得直线平面16.设数列的通项公式为,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为单调递增数列,,其前项和为,且满足.(1)求数列的通项公式;(2)若数列,其前项和为,若成立,求的最小值.18.已知等比数列{an}的前n项和为Sn,S3=,S6=.(1)求数列{an}的通项公式an;(2)令bn=6n-61+log2an,求数列{bn}的前n项和Tn.19.在中,内角的对边分别为,且.(1)求角;(2)若,,求的值.20.某学校高一、高二、高三的三个年级学生人数如下表
高三
高二
高一
女生
133
153
z
男生
333
453
633
按年级分层抽样的方法评选优秀学生53人,其中高三有13人.(1)求z的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取2人,经检测她们的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把这2人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过3.5的概率.21.如图,在三棱柱中,侧棱垂直于底面,,分别是的中点.(1)求证:平面;(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由递推关系可证得数列为等差数列,利用等差数列通项公式求得公差;利用等差数列通项公式和前项和公式分别求得和,代入求得结果.【详解】由得:数列为等差数列,设其公差为,,解得:,本题正确选项:【点睛】本题考查等差数列基本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前项和公式的应用.2、B【解析】由题意可设等差数列的首项为,公差为,所以所以,所以,即=2n-8,=,所以,选B.3、B【解析】
根据条件式,判断出,,且.由不等式性质、基本不等式性质或特殊值即可判断选项.【详解】因为所以可得,,且对于A,由对数函数的图像与性质可知,,所以A错误;对于B,由基本不等式可知,即由于,则,所以B正确;对于C,由条件可得,所以C错误;对于D,当时满足条件,但,所以D错误.综上可知,B为正确选项故选:B【点睛】本题考查了不等式性质的综合应用,根据基本不等式求最值,属于基础题.4、B【解析】
根据向量的坐标运算,先由,求得,再求的坐标.【详解】因为,所以,所以.故选:B【点睛】本题主要考查了向量的坐标运算,还考查了运算求解的能力,属于基础题.5、D【解析】试题分析:三角函数的平移原则为左加右减上加下减.直接求出平移后的函数解析式即可.解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.考点:函数y=Asin(ωx+φ)的图象变换.6、A【解析】
分别计算出每个面积,相加得到答案.【详解】故答案选A【点睛】本题考查了图像的表面积,意在考查学生的计算能力.7、C【解析】
根据同比和环比的定义比较两期数据得出结论.【详解】解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;2015年第一季度利用率为74.2%,2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;2016年底三季度利用率率为73.2%,2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;2017年第四季度利用率为78%,2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.故选C.【点睛】本题考查了新定义的理解,图表认知,考查分析问题解决问题的能力,属于基础题.8、B【解析】试题分析:本题是由等比数列与等差数列的相似性质,推出有关结论:由“等比”类比到“等差”,由“几何平均数”类比到“算数平均数”;所以,所得结论为是等差数列.考点:类比推理.9、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【详解】因为,故选C.【点睛】本题考查向量的加法和数乘运算的几何意义,考查平面向量基本定理在图形中的应用.10、C【解析】
先把直线方程中未知数的系数化为相同的,再利用两条平行直线间的距离公式,求得结果.【详解】解:两条平行直线与间,即两条平行直线与,故它们之间的距离为,故选:.【点睛】本题主要考查两条平行直线间的距离公式应用,注意未知数的系数必需相同,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先利用累加法求出an=1+n2﹣n,所以,设f(n),由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【详解】解:∵an+1﹣an=2n,∴当n≥2时,an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+1=n2﹣n+1且对n=1也适合,所以an=n2﹣n+1.从而设f(n),令f′(n),则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为故答案为【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.12、①③【解析】
∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正确;∵T=,故②不正确;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的图象关于点对称,③正确④不正确;故答案为①③.13、6【解析】试题分析:由题意得,编号为,由得共6个.考点:系统抽样14、【解析】
先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【点睛】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.15、(2)(4)【解析】
采用逐一验证法,利用线面的位置关系判断,可得结果.【详解】(1)错,若在平面内存在直线与平行,则//平面,可知//,而与相交,故矛盾(2)对,如图作,根据题意可知平面平面所以,作,点在平面,则平面,而平面,所以,故正确(3)错,若平面,则,而所以平面,则,矛盾(4)对,如图延长交于点连接,作//平面,平面,平面,所以//平面,故存在(5)错,若平面,则又,所以平面所以,可知点在以为直径的圆上又该圆与无交点,所以不存在.故答案为:(2)(4)【点睛】本题主要考查线线,线面,面面之间的关系,数形结合在此发挥重要作用,属中档题.16、【解析】
根据数列的通项式求出前项和,再极限的思想即可解决此题。【详解】数列的通项公式为,则,则答案.故为:.【点睛】本题主要考查了给出数列的通项式求前项和以及极限。求数列的前常用的方法有错位相减、分组求和、列项相消等。本题主要利用了分组求和的方法。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)10.【解析】
(1)先根据和项与通项关系得项之间递推关系,再根据等差数列定义及其通项公式得数列的通项公式;(2)先根据裂项相消法求,再解不等式得,即得的最小值.【详解】(1)由知:,两式相减得:,即,又数列为单调递增数列,,∴,∴,又当时,,即,解得或(舍),符合,∴是以1为首项,以2为公差的等差数列,∴.(2),∴,又∵,即,解得,又,所以的最小值为10.点睛:裂项相消法是指将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.18、(1)an=a1qn-1=2n-2;(2)Tn=n2-n..【解析】
(1)根据等比数列的通项公式和前项求得.(2)将代入中,得是等差数列,再求和.【详解】(1)∴,解得∴(2)∴∴数列是等差数列.又∴【点睛】本题考查等比数列和等差数列的通项和前项和,属于基础题.19、(1)(2),【解析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【详解】(1)由题意知,由正弦定理可得,因为,则,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中解答中熟记三角形的正弦、余弦定理,准确计算是解答的挂念,着重考查了推理与计算能力,属于基础题.20、(1)433(2)(3)【解析】
(1)设该校总人数为n人,由题意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)设所抽样本中有m个女生,因为用分层抽样的方法在高一女生中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2名女生,3名男生,分别记作S1,S2;B1,B2,B3,则从中任取2人的所有基本事件为(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共13个,其中至少有1名女生的基本事件有7个:(S1,B1),(S1,B2),(S1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工合同台账模板
- 烟酒店合伙协议合同范本图片
- 挖掘机买卖合同
- 濒危动物保护研究性学习报告课件
- 简易劳动合同书范本
- 基于2024年度市场推广协议的广告投放3篇
- 危险品运输合同模板
- 名义夫妻协议书范本
- 合伙经营合同协议书范本
- 人教版初中化学教学课件教学课件教学
- 原料药主要工艺设备(釜、固液分离、真空泵、干燥)
- 骨痹(骨关节病)中医护理效果评价表
- 四年级上册心理健康教案-9《我爱我的同学》 北师大版
- 抗病毒治疗依从性教育培训会
- 《建设工程监理合同(示范文本)》(GF-2012-0202)
- 《美丽的小兴安岭》学情分析方案
- 轻度损伤的自我处理课件讲义
- 低压电工作业(复审)模拟考试题及答案
- 通信工程投标专家继续教育题库(附答案)
- 直播带货-直播控场-带货直播间如何控场
- 【幼儿区域活动环境创设中存在的问题及其对策开题报告文献综述(含提纲)3000字】
评论
0/150
提交评论