江津中学2025届高一下数学期末检测模拟试题含解析_第1页
江津中学2025届高一下数学期末检测模拟试题含解析_第2页
江津中学2025届高一下数学期末检测模拟试题含解析_第3页
江津中学2025届高一下数学期末检测模拟试题含解析_第4页
江津中学2025届高一下数学期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江津中学2025届高一下数学期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则的最小值为A.3 B.4 C.5 D.62.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④3.在中,角所对的边分边为,已知,则此三角形的解的情况是()A.有一解 B.有两解 C.无解 D.有解但解的个数不确定4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.5.将两个长、宽、高分别为5,4,3的长方体垒在一起,使其中两个面完全重合,组成一个大长方体,则大长方体的外接球表面积的最大值为()A. B. C. D.6.函数,当时函数取得最大值,则()A. B. C. D.7.在中,角所对的边分别为,若.且,则的值为()A. B.C. D.或8.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.59.正方体中,异面直线与BC所成角的大小为()A. B. C. D.10.在ΔABC中,角A,B,C所对的边分别为a,b,c,若A=π3,B=π4,A.23 B.2 C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,且,则=_______.12.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限.13.若直线与直线互相平行,那么a的值等于_____.14.在△ABC中,sin2A=sin15.等差数列中,,,设为数列的前项和,则_________.16.已知中,内角A,B,C的对边分别为a,b,c,,,则的面积为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(I)求的值(II)求的最小正周期及单调递增区间.18.已知直线和.(1)若,求实数的值;(2)若,求实数的值.19.如图,矩形中,平面,,为上的点,且平面,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.20.如图,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)线段AD上是否存在点,使得它到平面PCD的距离为?若存在,求出值;若不存在,请说明理由.21.在中,A,B,C所对的边分别为,满足.(I)求角A的大小;(Ⅱ)若,D为BC的中点,且的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由,得,则,利用基本不等式,即可求解.【详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.3、C【解析】由三角形正弦定理可知无解,所以三角形无解,选C.4、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.5、B【解析】

要计算长方体的外接球表面积就是要求出外接球的半径,根据长方体的对角线是外接球的直径这一性质,就可以求出外接球的表面积,分类讨论:(1)长宽的两个面重合;(2)长高的两个面重合;(3)高宽两个面重合,分别计算出新长方体的对角线,然后分别计算出外接球的表面积,最后通过比较即可求出最大值.【详解】(1)当长宽的两个面重合,新的长方体的长为5,宽为4,高为6,对角线长为:,所以大长方体的外接球表面积为;(2)当长高两个面重合,新的长方体的长5,宽为8,高为3,对角线长为:,所以大长方体的外接球表面积为;(3)当宽高两个面重合,新的长方体的长为10,宽为4,高为3,对角线长为:,所以大长方体的外接球表面积为,显然大长方体的外接球表面积的最大值为,故本题选B.【点睛】本题考查了长方体外接球的半径的求法,考查了分类讨论思想,考查了球的表面积计算公式,考查了数学运算能力.6、A【解析】

根据三角恒等变换的公式化简得,其中,再根据题意,得到,求得,结合诱导公式,即可求解.【详解】由题意,根据三角恒等变换的公式,可得,其中,因为当时函数取得最大值,即,即,可得,即,所以.故选:A.【点睛】本题主要考查了三角恒等变换的应用,以及诱导公式的化简求值,其中解答中熟记三角恒等变换的公式,合理利用三角函数的诱导公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】

首先根据余弦定理,得到或.再分别计算即可.【详解】因为,所以,即:,解得:或.当时,.当时,.所以或.故选:D【点睛】本题主要考查余弦定理解三角形,熟记公式为解题的关键,属于中档题.8、D【解析】

由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.9、D【解析】

利用异面直线与BC所成角的的定义,平移直线,即可得答案.【详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.10、A【解析】

利用正弦定理asinA=【详解】在ΔABC中,由正弦定理得asinA=故选:A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由的值及,可得的值,计算可得的值.【详解】解:由,且,由,可得,故,故答案为:.【点睛】本题主要考查了同角三角函数的基本关系,熟练掌握其基本关系是解题的关键.12、二【解析】

由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限.【详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二.点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号.13、;【解析】由题意得,验证满足条件,所以14、π【解析】

根据正弦定理化简角的关系式,从而凑出cosA【详解】由正弦定理得:a2=则cos∵A∈0,π本题正确结果:π【点睛】本题考查利用正弦定理和余弦定理解三角形问题,属于基础题.15、【解析】

由等差数列的性质可得出的值,然后利用等差数列的求和公式可求出的值.【详解】由等差数列的基本性质可得,因此,.故答案为:.【点睛】本题考查等差数列求和,同时也考查了等差数列基本性质的应用,考查计算能力,属于基础题.16、【解析】

先根据以及余弦定理计算出的值,再由面积公式即可求解出的面积.【详解】因为,所以,所以,所以.故答案为:.【点睛】本题考查解三角形中利用余弦定理求角以及面积公式的运用,难度较易.三角形中,已知两边的乘积和第三边所对的角即可利用面积公式求解出三角形面积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)2;(II)的最小正周期是,.【解析】

(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值.(Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间.【详解】(Ⅰ)f(x)=sin2x﹣cos2xsinxcosx,=﹣cos2xsin2x,=﹣2,则f()=﹣2sin()=2,(Ⅱ)因为.所以的最小正周期是.由正弦函数的性质得,解得,所以,的单调递增区间是.【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.18、(1);(2).【解析】

(1)借助两直线垂直的充要条件建立方程求解;(2)借助两直线平行充要条件建立方程求解.【详解】(1)若,则.(2)若,则或2.经检验,时,与重合,时,符合条件,∴.【点晴】解析几何是运用代数的方法和知识解决几何问题一门学科,是数形结合的典范,也是高中数学的重要内容和高考的热点内容.解答本题时充分运用和借助题设条件中的垂直和平行条件,建立了含参数的直线的方程,然后再运用已知条件进行分析求解,从而将问题进行转化和化归,进而使问题获解.如本题的第一问中求参数的值时,是直接运用垂直的充要条件建立方程,这是方程思想的运用;再如第二问中求参数的值时也是运用了两直线平行的条件,但要注意的是这个条件不是两直线平行的充要条件,所以一定代回进行检验,这也是学生经常会出现错误的地方.19、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)先证明,再证明平面;(Ⅱ)由等积法可得即可求解.【详解】(Ⅰ)因为是中点,又因为平面,所以,由已知,所以是中点,所以,因为平面,平面,所以平面.(Ⅱ)因为平面,,所以平面,则,又因为平面,所以,则平面,由可得平面,因为,此时,,所以.【点睛】本题主要考查线面平行的判定及利用等积法求三棱锥的体积问题,属常规考题.20、(Ⅰ)证明见解析;(Ⅱ).【解析】试题分析:(Ⅰ)只需证明,又由面面垂直的性质定理知平面;(Ⅱ)连接、,假设存在点,使得它到平面的距离为,设,由,求得的值即可.试题解析:(Ⅰ)证明:在中,为中点,所以.又侧面底面,平面平面,平面,所以平面.(Ⅱ)连接、假设存在点,使得它到平面的距离为.设,则因为,为的中点,所以,且所以因为,且所以在中,所以所以由,即解得所以存在点满足题意,此时.考点:1.平面与平面垂直的性质;2.几何体

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论