版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省南京市秦淮区高一下数学期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为()A.193 B.192 C.191 D.1902.若,且,则下列不等式一定成立的是()A. B.C. D.3.设,是两个不同的平面,,是两条不同的直线,且,()A.若,则 B.若,则C.若,则 D.若,则4.定义运算为执行如图所示的程序框图输出的值,则式子的值是A.-1 B.C. D.5.已知圆和圆只有一条公切线,若,且,则的最小值为()A.2 B.4 C.8 D.96.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则7.已知数列中,,,则等于()A. B. C. D.8.已知,,,则实数、、的大小关系是()A. B.C. D.9.设集合,则A. B. C. D.10.已知圆:及直线:,当直线被截得的弦长为时,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若方程表示圆,则实数的取值范围是______.12.函数的值域是__________.13.已知,则的最大值是____.14.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是________.(写出所有正确结论的编号)15.已知函数,对于上的任意,,有如下条件:①;②;③;④.其中能使恒成立的条件序号是__________.16.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,、分别是棱,的中点,求证:(1)平面;(2)平面平面.18.在数列中,,,且;(1)设,证明是等比数列;(2)求数列的通项公式;(3)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项;19.在中,内角、、所对的边分别为、、,且.(1)求;(2)若,,求.20.从某学校高三年级共800名男生中随机抽取50名学生作为样本测量身高.测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组;第二组;…;第八组.下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组与第八组人数之和为第七组的两倍.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)求第六组和第七组的频率并补充完整频率分布直方图.21.如图1,在中,,,,分别是,,中点,,.现将沿折起,如图2所示,使二面角为,是的中点.(1)求证:面面;(2)求直线与平面所成的角的正弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
按分层抽样的定义,按比例计算.【详解】由题意,解得.故选:B.【点睛】本题考查分层抽样,属于简单题.2、B【解析】
根据不等式性质确定选项.【详解】当时,不成立;因为,所以;当时,不成立;当时,不成立;所以选B.【点睛】本题考查不等式性质,考查基本分析判断能力,属基础题.3、A【解析】试题分析:由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质4、D【解析】
由已知的程序框图可知,本程序的功能是:计算并输出分段函数的值,由此计算可得结论.【详解】由已知的程序框图可知:本程序的功能是:计算并输出分段函数的值,可得,因为,所以,,故选D.【点睛】本题主要考查条件语句以及算法的应用,属于中档题.算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.5、D【解析】
由题意可得两圆相内切,根据两圆的标准方程求出圆心和半径,可得,再利用“1”的代换,使用基本不等式求得的最小值.【详解】解:由题意可得两圆相内切,两圆的标准方程分别为,,圆心分别为,,半径分别为2和1,故有,,,当且仅当时,等号成立,的最小值为1.故选:.【点睛】本题考查两圆的位置关系,两圆相内切的性质,圆的标准方程的特征,基本不等式的应用,得到是解题的关键和难点.6、D【解析】
A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.7、A【解析】
变形为,利用累加法和裂项求和计算得到答案.【详解】故选:A【点睛】本题考查了累加法和裂项求和,意在考查学生对于数列方法的灵活应用.8、B【解析】
将bc化简为最简形式,再利用单调性比较大小。【详解】因为在单调递增所以【点睛】本题考查利用的单调性判断大小,属于基础题。9、B【解析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.10、C【解析】
求出圆心到直线的距离,由垂径定理计算弦长可解得.【详解】由题意,圆心为,半径为2,圆心到直线的距离为,所以,解得.故选:C.【点睛】本题考查直线与圆相交弦长问题,解题方法由垂径定理得垂直,由勾股定理列式计算.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【详解】由题意,方程可化为,方程表示圆,则满足,解得.【点睛】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.12、【解析】
根据反余弦函数的性质,可得函数在单调递减函数,代入即可求解.【详解】由题意,函数的性质,可得函数在单调递减函数,又由,所以函数在的值域为.故答案为:.【点睛】本题主要考查了反余弦函数的单调性的应用,其中解答中熟记反余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.13、4【解析】
利用对数的运算法则以及二次函数的最值化简求解即可.【详解】,,,则.当且仅当时,函数取得最大值.【点睛】本题主要考查了对数的运算法则应用以及利用二次函数的配方法求最值.14、①②④【解析】用正方体ABCD-A1B1C1D1实例说明A1D1与BC1在平面ABCD上的投影互相平行,AB1与BC1在平面ABCD上的投影互相垂直,BC1与DD1在平面ABCD上的投影是一条直线及其外一点.故①②④正确.15、③④【解析】∵g(x)=[(﹣x)2﹣cos(﹣x)]=[x2﹣cosx]=g(x),∴g(x)是偶函数,∴g(x)图象关于y轴对称,∵g′(x)=x+sinx>0,x∈(0,],∴g(x)在(0,]上是增函数,在[﹣,0)是减函数,故③x1>|x2|;④时,g(x1)>g(x2)恒成立,故答案为:③④.点睛:此题考查的是函数的单调性的应用;已知表达式,根据表达式判断函数的单调性,和奇偶性,偶函数在对称区间上的单调性相反,根据单调性的定义可知,增函数自变量越大函数值越大,减函数自变量越大函数值越小。16、6【解析】
由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明【解析】
(1)设与的交点为,连结,证明,再由线面平行的判定可得平面;(2)由为线段的中点,点是的中点,证得四边形为平行四边形,得到,进一步得到平面.再由平面,结合面面平行的判定可得平面平面.【详解】证明:(1)设与的交点为,连结,∵四边形为平行四边形,∴为中点,又是的中点,∴是三角形的中位线,则,又∵平面,平面,∴平面;(2)∵为线段的中点,点是的中点,∴且,则四边形为平行四边形,∴,又∵平面,平面,∴平面.又平面,,且平面,平面,∴平面平面.【点睛】本题考查直线与平面,平面与平面平行的判定,考查空间想象能力与思维能力,是中档题.18、(1)略(2)(3)证明略【解析】本题源自等差数列通项公式的推导.(1)证明:由题设(),得,即,.又,,所以是首项为1,公比为的等比数列.(2)由(1),,……,().将以上各式相加,得().所以当时,上式对显然成立.(3)由(2),当时,显然不是与的等差中项,故.由可得,由得,①整理得,解得或(舍去).于是.另一方面,,.由①可得,.所以对任意的,是与的等差中项.19、(1)(2)【解析】
(1)利用正弦定理化简为,再利用余弦定理得到答案.(2)先用和差公式计算,再利用正弦定理得到.【详解】(1)由正弦定理,可化为,得,由余弦定理可得,有又由,可得.(2)由,由正弦定理有.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.20、(1)144人(2)频率分别为0.08和0.1,见解析【解析】
(1)由直方图求出前五组频率为0.82,后三组频率为,由此能求出这所学校高三男生身高在以上(含的人数.(2)由频率分布直方图得第八组频率为0.04,人数为2人,设第六组人数为,则第七组人数为,再由,得,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.1.由此能求出结果.【详解】(1)由图知前5组频率为后三组频率为.全校高三男生身高在180cm以上的人有人.(2)如图知第八组频率为,人数为人.设第六组人数为m,后三组共9人.第七组人数为.,.即第六组4人,第七组3人,其频率分别为0.08和0.1,高度分别为0.016和0.012,如图所示.【点睛】本题考查频率分布直方图的应用,频率分布直方图的性质等基础知识,考查数据处理能力,属于基础题.21、(1)见解析(2)【解析】
(1)证明面得到面面.(2)先判断为直线与平面所成的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甲方与乙方关于2024年度版钢结构厂房项目的材料供应合同2篇
- 《临床心电图》课件
- 《标准宣贯隧道》课件
- 讲述蝴蝶课件
- 人教版教学课件生物群落的演替
- 《级公路标准化施工》课件
- 商家入驻协议
- 博物馆申请报告范文
- 《j建筑面积计算》课件
- 深圳课件教学课件
- 2024年军队文职人员统一招聘考试英语真题
- 2024年出纳招聘笔试试题及答案
- 导管相关静脉血栓预防与护理
- 公共交通车辆清洁标准
- NB-T47023-2012长颈对焊法兰
- 费曼学习法课件
- 校本教材与教学评价方案三篇
- 2024年高考语文阅读之马尔克斯小说专练(解析版)
- 2023年电力工程建设项目安全生产标准化规范
- 2024-淘宝商城入驻协议标准版
- 六年级圆与扇形奥数拓展(几何01讲)
评论
0/150
提交评论