2024届上海第二工业大学附属龚路中学高一下数学期末监测模拟试题含解析_第1页
2024届上海第二工业大学附属龚路中学高一下数学期末监测模拟试题含解析_第2页
2024届上海第二工业大学附属龚路中学高一下数学期末监测模拟试题含解析_第3页
2024届上海第二工业大学附属龚路中学高一下数学期末监测模拟试题含解析_第4页
2024届上海第二工业大学附属龚路中学高一下数学期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海第二工业大学附属龚路中学高一下数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点P为圆上一个动点,O为坐标原点,过P点作圆O的切线与圆相交于两点A,B,则的最大值为()A. B.5 C. D.2.已知函数的最大值为,最小值为,则的值为()A. B. C. D.3.已知向量,,若与的夹角为,则()A.2 B. C. D.14.如图,在等腰梯形中,,于点,则()A. B.C. D.5.已知平面向量,,,,且,则向量与向量的夹角为()A. B. C. D.6.已知,则的值为()A. B.1 C. D.7.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.98.已知实数列-1,x,y,z,-2成等比数列,则xyz等于A.-4 B. C. D.9.已知的顶点坐标为,,,则边上的中线的长为()A. B. C. D.10.已知直线,,若,则()A.2 B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在正方体中,有以下结论:①平面;②平面;③;④异面直线与所成的角为.则其中正确结论的序号是____(写出所有正确结论的序号).12.若把写成的形式,则______.13.已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为_______________.14.直线在轴上的截距是__________.15.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.16.不等式的解集为_____________________。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在△ABC中,中线长AM=2.(1)若=-2,求证:++=0;(2)若P为中线AM上的一个动点,求·(+)的最小值.18.已知小岛A的周围38海里内有暗礁,船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后在C处测得小岛A在船的南偏东45°,如果此船不改变航向,继续向南航行,问有无触礁的危险?19.给定常数,定义函数,数列满足.(1)若,求及;(2)求证:对任意,;(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.20.已知数列满足,.(1)若,求证:数列为等比数列.(2)若,求.21.在平面直角坐标系中,的顶点、,边上的高线所在的直线方程为,边上的中线所在的直线方程为.(1)求点B到直线的距离;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

作交于,连接设,得,,进而,换元,得,通过求得的范围即可求解【详解】作交于,连接设,则,∴取,∴.显然易知令,,当且仅当等号成立;此时∴故选A【点睛】本题考查圆的几何性质,切线的应用,弦长公式,考查函数最值得求解,考查换元思想,是难题2、B【解析】由解得为函数的定义域.令,消去得,图像为椭圆的一部分,如下图所示.,即直线,由图可知,截距在点处取得最小值,在与椭圆相切的点处取得最大值.而,故最小值为.联立,消去得,其判别式为零,即,解得(负根舍去),即,故.【点睛】本题主要考查含有两个根号的函数怎样求最大值和最小值.先用换元法,将原函数改写成为一次函数的形式.然后利用和的关系,得到的可行域,本题中可行域为椭圆在第一象限的部分.然后利用,用截距的最大值和最小值来求函数的最大值和最小值.3、B【解析】

先计算与的模,再根据向量数量积的性质即可计算求值.【详解】因为,,所以,.又,所以,故选B.【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.4、A【解析】

根据等腰三角形的性质可得是的中点,由平面向量的加法运算法则结合向量平行的性质可得结果.【详解】因为,所以是的中点,可得,故选.【点睛】本题主要考查向量的几何运算以及向量平行的性质,属于简单题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)5、B【解析】

根据可得到:,由此求得;利用向量夹角的求解方法可求得结果.【详解】由题意知:,则设向量与向量的夹角为则本题正确选项:【点睛】本题考查向量夹角的求解,关键是能够通过平方运算将模长转变为向量的数量积,从而得到向量的位置关系.6、B【解析】

化为齐次分式,分子分母同除以,化弦为切,即可求解.【详解】.故选:B.【点睛】本题考查已知三角函数值求值,通过齐次分式化弦为切,属于基础题.7、B【解析】

由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.8、C【解析】.9、D【解析】

利用中点坐标公式求得,再利用两点间距离公式求得结果.【详解】由,可得中点又本题正确选项:【点睛】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标.10、D【解析】

当为,为,若,则,由此求解即可【详解】由题,因为,所以,即,故选:D【点睛】本题考查已知直线垂直求参数问题,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、①③【解析】

①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.12、【解析】

将角度化成弧度,再用象限角的表示方法求解即可.【详解】解:.故答案为:.【点睛】本题考查弧度与角度的互化,象限角的表示,属于基础题.13、【解析】

试题分析:设三角形的三边长为a-4,b=a,c=a+4,(a<b<c),根据题意可知三边长构成公差为4的等差数列,可知a+c=2b,C=120,,则由余弦定理,c=a+b-2abcosC,,三边长为6,10,14,,b=a+c-2accosB,即(a+c)=a+c-2accosB,cosB=,sinB=可知S==.考点:本试题主要考查了等差数列与解三角形的面积的求解的综合运用.点评:解决该试题的关键是利用余弦定理来求解,以及边角关系的运用,正弦面积公式来求解.巧设变量a-4,a,a+4会简化运算.14、【解析】

把直线方程化为斜截式,可得它在轴上的截距.【详解】解:直线,即,故它在轴上的截距是4,故答案为:.【点睛】本题主要考查直线方程的几种形式,属于基础题.15、【解析】

如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.16、或【解析】

利用一元二次函数的图象或转化为一元一次不等式组解一元二次不等式.【详解】由,或,所以或,不等式的解集为或.【点睛】本题考查解一元二次不等式,考查计算能力,属于基本题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)最小值-2.【解析】

试题分析:(1)∵M是BC的中点,∴=(+).代入=-2,得=--,即++=0(2)若P为中线AM上的一个动点,若AM=2,我们易将·(+),转化为-2||||=2(x-1)2-2的形式,然后根据二次函数在定区间上的最值的求法,得到答案.试题解析:(1)证明:∵M是BC的中点,∴=(+)代入=-2,得=--,即++=0(2)设||=x,则||=2-x(0≤x≤2)∵M是BC的中点,∴+=2∴·(+)=2·=-2||||=-2x(2-x)=2(x2-2x)=2(x-1)2-2,当x=1时,取最小值-2考点:平面向量数量积的运算.【详解】请在此输入详解!18、继续向南航行无触礁的危险.【解析】试题分析:要判断船有无触礁的危险,只要判断A到BC的直线距离是否大于38海里就可以判断.解:在三角形ABC中:BC=30,∠B=30°,∠ACB=180°-45°=135°,故∠A=15°由正弦定理得:故于是A到BC的直线距离是Acsin45°==,大于38海里.答:继续向南航行无触礁的危险.考点:本题主要考查正弦定理的应用点评:分析几何图形的特征,运用三角形内角和定理确定角的关系,有助于应用正弦定理.19、见解析【解析】(1)因为,,故,(2)要证明原命题,只需证明对任意都成立,即只需证明若,显然有成立;若,则显然成立综上,恒成立,即对任意的,(3)由(2)知,若为等差数列,则公差,故n无限增大时,总有此时,即故,即,当时,等式成立,且时,,此时为等差数列,满足题意;若,则,此时,也满足题意;综上,满足题意的的取值范围是.【考点定位】考查数列与函数的综合应用,属难题.20、(1)证明见解析(2)答案见解析【解析】

(1)证明即可;(2)化简,讨论,和即可求解【详解】因为,所以,所以.又所以数列是以3为首项,9为公比的等比数列.(2)因为,所以,所以:当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论