贵州黔东南州2025届高一数学第二学期期末统考模拟试题含解析_第1页
贵州黔东南州2025届高一数学第二学期期末统考模拟试题含解析_第2页
贵州黔东南州2025届高一数学第二学期期末统考模拟试题含解析_第3页
贵州黔东南州2025届高一数学第二学期期末统考模拟试题含解析_第4页
贵州黔东南州2025届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州黔东南州2025届高一数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在等差数列中,若公差,则()A. B. C. D.2.若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列,则的充要条件是;(4)若是等比数列且,则的充要条件是;其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个3.在中,A,B,C的对边分别为a,b,c,,则的形状一定是()A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形4.已知向量=(3,4),=(2,1),则向量与夹角的余弦值为()A. B. C. D.5.若不等式的解集为,则()A. B.C. D.6.在中,若,则此三角形为()三角形.A.等腰 B.直角 C.等腰直角 D.等腰或直角7.已知平面向量,,且,则=A. B. C. D.8.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”,则().A.1 B.2019 C. D.9.若,则的大小关系为A. B. C. D.10.函数,当上恰好取得5个最大值,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.项数为的等差数列,若奇数项之和为88,偶数项之和为77,则实数的值为_____.12.已知在中,,则____________.13.已知点,点,则________.14.某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取一个样本进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将学生去图书馆的次数分为5组:制作了如图所示的频率分布表,则抽样总人数为_______.15.已知数列的前项和为,若,则______.16.化简:________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系xOy中,已知圆C:x2⑴若圆E的半径为2,圆E与x轴相切且与圆C外切,求圆E的标准方程;⑵若过原点O的直线l与圆C相交于A,B两点,且OA=AB,求直线l的方程.18.已知数列满足若数列满足:(1)求数列的通项公式;(2)求证:是等差数列.19.如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.(1)证明:平面.(2)若三棱锥的体积为4,求点到平面的距离.20.在中,内角所对的边分别为.已知,.(I)求的值;(II)求的值.21.从全校参加科技知识竞赛初赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高之比是,最后一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)求样本中成绩在分的学生人数;(3)从样本中成绩在90.5分以上的同学中随机地抽取2人参加决赛,求最高分甲被抽到的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据等差数列的通项公式求解即可得到结果.【详解】∵等差数列中,,公差,∴.故选B.【点睛】等差数列中的计算问题都可转为基本量(首项和公差)来处理,运用公式时要注意项和项数的对应关系.本题也可求出等差数列的通项公式后再求出的值,属于简单题.2、B【解析】

对各选项逐个论证或给出反例后可得正确的命题的个数.【详解】对于(1),取,则,因该数列的公差为,故是递增数列.,故,所以数列不是递增数列,故(1)错.对于(2),取,则,数列是递增数列,但,故数列是递增数列推不出的各项均为正数,故(2)错.对于(3),取,则,,故当时,但总成立,故总成立,故推不出,故(3)错.对于(4),设公比为,若,若,则,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要条件.若,则,所以,所以,所以是的充分条件故的充要条件是,故(4)正确.故选:B.【点睛】本题考查数列的单调性、数列的前项和的单调性以及等比数列前项和的积的性质,对于等差数列的单调性,我们可以求出前项和关于的二次函数的形式,再由二次函数的性质讨论其单调性,也可以根据项的符号来判断前项和的单调性.应用等比数列的求和公式时,注意对公比是否为1分类讨论.3、A【解析】

利用平方化倍角公式和边化角公式化简得到,结合三角形内角和定理化简得到,即可确定的形状.【详解】化简得即即是直角三角形故选A【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.4、A【解析】

由向量的夹角公式计算.【详解】由已知,,.∴.故选A.【点睛】本题考查平面向量的数量积,掌握数量积公式是解题基础.5、D【解析】

根据一元二次不等式的解法,利用韦达定理列方程组,解方程组求得的值.【详解】根据一元二次不等式的解法可知,是方程的两个根,根据韦达定理有,解得,故选D.【点睛】本小题主要考查一元二次不等式的解集与对应一元二次方程根的关系,考查根与系数关系,考查方程的思想,属于基础题.6、B【解析】

由条件结合正弦定理即可得到,由此可得三角形的形状.【详解】由于在中,有,根据正弦定理可得;所以此三角形为直角三角形;、故答案选B【点睛】本题主要考查正弦定理的应用,属于基础题.7、B【解析】

根据向量平行求出x的值,结合向量模长的坐标公式进行求解即可.【详解】且,则故故选B.【点睛】本题考查向量模长的计算,根据向量平行的坐标公式求出x的值是解决本题的关键.8、A【解析】

计算部分数值,归纳得到,计算得到答案.【详解】;;;…归纳总结:故故选:【点睛】本题考查了数列的归纳推理,意在考查学生的推理能力.9、A【解析】

利用作差比较法判断得解.【详解】①,∵,∴,故.②∵,∴,所以a>ab.综上,故选A.【点睛】本题主要考查作差比较法比较实数的大小,意在考查学生对该知识的理解掌握水平,属于基础题.10、C【解析】

先求出取最大值时的所有的解,再解不等式,由解的个数决定出的取值范围.【详解】设,所以,解得,所以满足的值恰好只有5个,所以的取值可能为0,1,2,3,4,由,故选C.【点睛】本题主要考查正弦函数的最值以及不等式的解法,意在考查学生的数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】

奇数项和偶数项相减得到和,故,代入公式计算得到答案.【详解】由题意知:,前式减后式得到:,后式减前式得到故:解得故答案为:7【点睛】本题考查了等差数列的奇数项和与偶数项和关系,通过变换得到是解题的关键.12、【解析】

根据可得,根据商数关系和平方关系可解得结果.【详解】因为,所以且,又,所以,所以,因为,所以.故答案为:.【点睛】本题考查了三角函数的符号法则,考查了同角公式中的商数关系和平方关系式,属于基础题.13、【解析】

直接利用两点间的距离公式求解即可.【详解】点A(2,1),B(5,﹣1),则|AB|.故答案为:.【点睛】本题考查两点间的距离公式的应用,基本知识的考查.14、20【解析】

总体人数占的概率是1,也可以理解成每个人在整体占的比重一样,所以三组的频率为:,共有14人,即14人占了整体的0.7,那么整体共有人。【详解】前三组,即三组的频率为:,,解得:【点睛】此题考查概率,通过部分占总体的概率即可计算出总体的样本值,属于简单题目。15、【解析】

利用和的关系计算得到答案.【详解】当时,满足通项公式故答案为【点睛】本题考查了和的关系,忽略的情况是容易发生的错误.16、【解析】

根据三角函数的诱导公式,准确运算,即可求解.【详解】由题意,可得.故答案为:.【点睛】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(x+3)2+(y-2)2【解析】

(1)设出圆E的标准方程为(x-a)2+(y-b)2=r2,由圆E与x轴相切,可得b=r,由圆E与圆C外切,可得两圆心距等于半径之和,由此解出(2)法一:设出A点坐标为(x0,y0),根据OA=AB,可得到点B坐标,把A、B两点坐标代入圆法二:设AB的中点为M,连结CM,CA,设出直线l的方程,由题求出CM的长,利用点到直线的距离即可得求出k值,从而得到直线l的方程【详解】⑴设圆E的标准方程为(x-a)2+(y-b)2=r2因为圆E的半径为2,与x轴相切,所以b=2因为圆E与圆C外切所以EC=3,即a由①②解得a=±3,b=2故圆E的标准方程为(x+3)2+⑵方法一;设A(因为OA=AB,所以A为OB的中点,从而B(2因为A,B都在圆C上所以x解得x0=-故直线l的方程为:y=±方法二:设AB的中点为M,连结CM,CA设AM=t,CM=d因为OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由题可知直线l的斜率一定存在,设直线l的方程为y=kx则d=2k故直线l的方程为y=±【点睛】本题考查圆的标准方程与直线方程,解题关键是设出方程,找出关系式,属于中档题。18、(1)(1)证明见解析【解析】

数列满足,变形为,利用等比数列的通项公式即可得出数列满足:,时,,可得,化为:,可得:,相减化简即可证明.【详解】(1)数列满足,,数列是等比数列,首项为1,公比为1.,.证明:数列满足:,时,,解得.时,,可得,化为:,可得:,相减可得:,化为:,是等差数列.【点睛】本题主要考查了等差数列与等比数列的定义通项公式、指数运算性质、数列递推关系,考查了推理能力与计算能力,属于中档题.19、(1)见解析(2)6【解析】

(1)由平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行可判定平面;(2)由三棱锥的体积为4,可知四棱锥的体积,再由三棱锥的体积公式即可求得高.【详解】(1)证明:连接,与交于点,连接.因为侧面是平行四边形,所以点是的中点.因为点是棱的中点,所以.因为平面,平面,所以平面.(2)解:因为三棱锥的体积为4,所以三棱柱的体积为12,则四棱锥的体积为.因为侧面是边长为2的正方形,所以侧面的面积为.设点到平面的距离为,则,解得.故点到平面的距离为6.【点睛】本题考查直线平行平面的判定和用三棱锥体积公式求点到平面的距离.20、(Ⅰ)(Ⅱ)【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:由,及,得.由,及余弦定理,得.(Ⅱ)解:由(Ⅰ),可得,代入,得.由(Ⅰ)知,A为钝角,所以.于是,,故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.21、(1)48;(2)30;(3)【解析】

(1)设样本容量为,列方程求解即可;(2)根据比例列式求解即可;(3)根据比例得成绩在90.5分以上的同学有6人,抽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论