版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省庆阳六中高一下数学期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.2.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A. B. C. D.3.有一个容量为200的样本,样本数据分组为,,,,,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间内的频数为()A.48 B.60 C.64 D.724.设,则下列不等式恒成立的是A. B.C. D.5.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A. B. C. D.6.的值等于()A. B. C. D.7.直线的倾斜角为A. B. C. D.8.在等差数列中,若,则()A. B. C. D.9.在x轴上的截距为2且倾斜角为135°的直线方程为().A.y=-x+2 B.y=-x-2 C.y=x+2 D.y=x-210.直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则n的值为()A.-12 B.-14 C.10 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,已知,50为第________项.12.若直线与圆相切,则________.13.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是________.(写出所有正确结论的编号)14.夏季某座高山上的温度从山脚起每升高100米降低0.8度,若山脚的温度是36度,山顶的温度是20度,则这座山的高度是________米15.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.16.数列满足:(且为常数),,当时,则数列的前项的和为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的最大值.18.已知圆,直线.圆与轴交于两点,是圆上不同于的一动点,所在直线分别与交于.(1)当时,求以为直径的圆的方程;(2)证明:以为直径的圆截轴所得弦长为定值.19.已知圆心在直线上的圆C经过点,且与直线相切.(1)求过点P且被圆C截得的弦长等于4的直线方程;(2)过点P作两条相异的直线分别与圆C交于A,B,若直线PA,PB的倾斜角互补,试判断直线AB与OP的位置关系(O为坐标原点),并证明.20.已知数列的前项和,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.21.已知圆C:(x-1)2(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.2、C【解析】
试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.3、B【解析】
由,求出,计算出数据落在区间内的频率,即可求解.【详解】由,解得,所以数据落在区间内的频率为,所以数据落在区间内的频数,故选B.【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.4、C【解析】
利用不等式的性质,合理推理,即可求解,得到答案.【详解】因为,所以,所以A项不正确;因为,所以,,则,所以B不正确;因为,则,所以,又因为,则,所以等号不成立,所以C正确;由,所以,所以D错误.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的性质,合理运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】试题分析:本题是几何概型问题,矩形面积2,半圆面积,所以质点落在以AB为直径的半圆内的概率是,故选B.考点:几何概型.6、C【解析】
根据特殊角的三角函数值,得到答案.【详解】.故选C项.【点睛】本题考查特殊角的三角函数值,属于简单题.7、D【解析】
求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.8、B【解析】
由等差数列的性质可得,则答案易求.【详解】在等差数列中,因为,所以.所以.故选B.【点睛】本题考查等差数列性质的应用.在等差数列中,若,则.特别地,若,则.9、A【解析】直线的斜率为tan135°=-1,由点斜式求得直线的方程为y=-x+b,将截据y=0,x=2代入方程,解得b=2,所以,可得y=-x+2,故答案为A10、A【解析】
由直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【详解】∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案为:A【点睛】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
方程变为,设,解关于的二次方程可求得。【详解】,则,即设,则,有或取得,,所以是第4项。【点睛】发现,原方程可通过换元,变为关于的一个二次方程。对于指数结构,,等,都可以通过换元变为二次形式研究。12、1【解析】
利用圆心到直线的距离等于半径列方程,解方程求得的值.【详解】由于直线和圆相切,所以圆心到直线的距离,即,由于,所以.故答案为:【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题.13、①②④【解析】用正方体ABCD-A1B1C1D1实例说明A1D1与BC1在平面ABCD上的投影互相平行,AB1与BC1在平面ABCD上的投影互相垂直,BC1与DD1在平面ABCD上的投影是一条直线及其外一点.故①②④正确.14、2000【解析】
由题意得,温度下降了,再求出这个温度是由几段100米得出来的,最后乘以100即可.【详解】由题意得,这座山的高度为:米故答案为:2000【点睛】本题结合实际问题考查有理数的混合运算,解题关键是温度差里有几个0.8,属于基础题.15、【解析】
利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【点睛】本题考查斜二测画法的规则,考查基本识图、作图能力.16、【解析】
直接利用分组法和分类讨论思想求出数列的和.【详解】数列满足:(且为常数),,当时,则,所以(常数),故,所以数列的前项为首项为,公差为的等差数列.从项开始,由于,所以奇数项为、偶数项为,所以,故答案为:【点睛】本题考查了由递推关系式求数列的性质、等差数列的前项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】
(1)先利用正弦定理角化边,然后根据余弦定理求角;(2)利用余弦定理以及基本不等式求解最值,注意取等号的条件.【详解】解:(1)由正弦定理得,由余弦定理得,∴.又∵,∴.(2)由余弦定理得,即,化简得,,即,当且仅当时,取等号.∴.【点睛】在三角形中,已知一角及其对边,求解周长或者面积的最值的方法:未给定三角形形状时,直接利用余弦定理和基本不等式求解最值;给定三角形形状时,先求解角的范围,然后根据正弦定理进行转化求解.18、(1);(2)证明见解析.【解析】
(1)讨论点的位置,根据直线的方程,直线的方程分别与直线方程联立,得出的坐标,进而得出圆心坐标以及半径,即可得出该圆的方程;(2)讨论点的位置,根据直角三角形的边角关系得出的坐标,进而得出圆心坐标以及半径,再由圆的弦长公式化简即可证明.【详解】(1)由圆的方程可知,①当点在第一象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为②当点在第四象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为综上,以为直径的圆的方程为(2)①当点在圆上半圆运动时,取直线交轴于点,如下图所示设,则则以为直径的圆的圆心坐标为,半径所以以为直径的圆截轴所得弦长为②当点在圆下半圆运动时,取直线交轴于点,如下图所示设,则则以为直径的圆的圆心坐标为,半径所以以为直径的圆截轴所得弦长为综上,以为直径的圆截轴所得弦长为定值.【点睛】本题主要考查了求圆的方程以及圆的弦长公式的应用,属于中档题.19、(1)或;(2)平行【解析】
(1)设出圆的圆心为,半径为,可得圆的标准方程,根据题意可得,解出即可得出圆的方程,讨论过点P的直线斜率存在与否,再根据点到直线的距离公式即可求解.(2)由题意知,直线PA,PB的倾斜角互补,分类讨论两直线的斜率存在与否,当斜率均存在时,则直线PA的方程为:,直线PB的方程为:,分别与圆C联立可得,利用斜率的计算公式与作比较即可.【详解】(1)根据题意,不妨设圆C的圆心为,半径为,则圆C,由圆C经过点,且与直线相切,则,解得,故圆C的方程为:,所以点在圆上,过点P且被圆C截得的弦长等于4的直线,当直线的斜率不存在时,直线为:,满足题意;当直线的斜率存在时,设直线的斜率为,直线方程为:,故,解得,故直线方程为:.综上所述:所求直线的方程:或.(2)由题意知,直线PA,PB的倾斜角互补,且直线PA,PB的斜率均存在,设两直线的倾斜角为和,,,因为,由正切的性质,则,不妨设直线的斜率为,则PB的斜率为,即:,则:,由,得,点的横坐标为一定是该方程的解,故可得,同理,,,,直线AB与OP平行.【点睛】本题考查了圆的标准方程,已知弦长求直线方程,考查了直线与圆的位置关系以及学生的计算能力,属于中档题.20、(Ⅰ);(Ⅱ).【解析】
(1)本题可令求出的值,然后令求出,即可求出数列的通项公式;(2)首先可令,然后根据错位相减法即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年危险化学品废弃物清运及处理合同
- 2024年工程分包商环境合规审计合同
- 04年彩钢瓦安装于城市公共设施建设项目合同
- 2024全新网络安全防护服务合同
- 2024年居间贷款服务协议样本
- 2024企业级即时通讯工具开发与部署合同
- 04版技术研发与成果转化合同
- 2024商标注册全权代理合同书
- 2024就区块链技术在供应链管理中的应用合作协议
- 2024年婚纱摄影店与顾客订单合同
- 智能存包柜(储物柜)产品技术说明书
- 電鍍技術資料大全
- 控轧控冷技术在钢材生产中的应用
- 连接器成本分析-B版
- 金融业不良资产处置法律服务方案书
- 基底节区解剖位置关系.ppt
- 电子商务购物平台的设计与开发论文
- xx大学成人高等教育校外教学点检查自查报告
- 《在政府教育工作督导评估反馈会上的表态发言》
- 六年级上册数学比的计算题
- 第三方破坏事故分析与对策
评论
0/150
提交评论