版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市滨海七所重点学校2024届高一下数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.ΔABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=6,c=3,则A=A.45° B.60° C.75° D.90°2.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.43.已知函数,,若成立,则的最小值为()A. B. C. D.4.已知,,,若,则等于()A. B. C. D.5.如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全。已知该班学生投篮成绩的中位数是5,则根据统计图,则下列说法错误的是()A.3球以下(含3球)的人数为10B.4球以下(含4球)的人数为17C.5球以下(含5球)的人数无法确定D.5球的人数和6球的人数一样多6.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.757.已知m,n是两条不同的直线,是三个不同的平面,则下列命题正确的是()A.若,,则 B.若,则C.若,,,则 D.若,,则8.已知等差数列的前项和为,,,则使取得最大值时的值为()A.5 B.6 C.7 D.89.若,是夹角为的两个单位向量,则与的夹角为()A. B. C. D.10.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,是与的等比中项,则最小值为_________.12.在中,已知M是AB边所在直线上一点,满足,则________.13.数列满足:,,则______.14.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的所有棱长和为_______.15.已知实数满足约束条件,若目标函数仅在点处取得最小值,则的取值范围是__________.16.在等比数列中,已知,则=________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知△ABC内角A,B,C的对边分别是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面积的最大值.18.设为数列的前项和,.(1)求证:数列是等比数列;(2)求证:.19.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面积.20.在三棱锥中,平面平面,,,分别是棱,上的点(1)为的中点,求证:平面平面.(2)若,平面,求的值.21.已知函数.(1)判断函数奇偶性;(2)讨论函数的单调性;(3)比较与的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用正弦定理求出sinB的值,由b<c得出B<C,可得出角B的值,再利用三角形的内角和定理求出角A【详解】由正弦定理得bsinB=∵b<c,则B<C,所以,B=45∘,由三角形的内角和定理得故选:C.【点睛】本题考查利用正弦定理解三角形,也考查了三角形内角和定理的应用,在解题时要注意正弦值所对的角有可能有两角,可以利用大边对大角定理或两角之和小于180∘2、C【解析】
先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.3、B【解析】,则,所以,则,易知,,则在单调递减,单调递增,所以,故选B。点睛:本题考查导数的综合应用。利用导数求函数的极值和最值是导数综合应用题型中的常见考法。通过求导,首先观察得到导函数的极值点,利用图象判断出单调增减区间,得到最值。4、A【解析】
根据向量的坐标运算法则,依据题意列出等式求解.【详解】由题知:,,,因为,所以,故,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.5、D【解析】
据投篮成绩的条形统计图,结合中位数的定义,对选项中的命题分析、判断即可.【详解】根据投篮成绩的条形统计图,3球以下(含3球)的人数为,6球以下(含6球)的人数为,结合中位数是5知4球以下(含4球)的人数为不多于17,而由条形统计图得4球以下(含4球)的人数不少于,因此4球以下(含4球)的人数为17所以5球的人数和6球的人数一共是17,显然5球的人数和6球的人数不一样多,故选D.【点睛】本题考查命题真假的判断,考查条形统计图、中位数的性质等基础知识,考查运算求解能力,是基础题.6、D【解析】
由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.7、C【解析】
利用线面垂直、线面平行、面面垂直的性质定理分别对选项分析选择.【详解】对于A,若,,则或者;故A错误;对于B,若,则可能在内或者平行于;故B错误;对于C,若,,,过分作平面于,作平面,则根据线面平行的性质定理得,,∴,根据线面平行的判定定理,可得,又,,根据线面平行的性质定理可得,又,∴;故C正确;对于D.若,,则与可能垂直,如墙角;故D错误;故选:C.【点睛】本题考查了面面垂直、线面平行、线面垂直的性质定理及应用,涉及空间线线平行的传递性,考查了空间想象能力,熟练运用定理是关键.8、D【解析】
由题意求得数列的通项公式为,令,解得,即可得到答案.【详解】由题意,根据等差数列的性质,可得,即又由,即,所以等差数列的公差为,又由,解得,所以数列的通项公式为,令,解得,所以使得取得最大值时的值为8,故选D.【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及前n项和最值问题,其中解答中熟记等差数列的性质和通项公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】
根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.10、C【解析】
以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【点睛】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据等比中项定义得出的关系,然后用“1”的代换转化为可用基本不等式求最小值.【详解】由题意,所以,所以,当且仅当,即时等号成立.所以最小值为1.故答案为:1.【点睛】本题考查等比中项的定义,考查用基本不等式求最值.解题关键是用“1”的代换找到定值,从而可用基本不等式求最值.12、3【解析】
由M在AB边所在直线上,则,又,然后将,都化为,即可解出答案.【详解】因为M在直线AB上,所以可设,
可得,即,又,则由与不共线,所以,解得.故答案为:3【点睛】本题考查向量的减法和向量共线的利用,属于基础题.13、【解析】
可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题14、【解析】
取半正多面体的截面正八边形,设半正多面体的棱长为,过分别作于,于,可知,,可求出半正多面体的棱长及所有棱长和.【详解】取半正多面体的截面正八边形,由正方体的棱长为1,可知,易知,设半正多面体的棱长为,过分别作于,于,则,,解得,故该半正多面体的所有棱长和为.【点睛】本题考查了空间几何体的结构,考查了空间想象能力与计算求解能力,属于中档题.15、【解析】
利用数形结合,讨论的范围,比较斜率大小,可得结果.【详解】如图,当时,,则在点处取最小值,符合当时,令,要在点处取最小值,则当时,要在点处取最小值,则综上所述:故答案为:【点睛】本题考查目标函数中含参数的线性规划问题,难点在于寻找斜率之间的关系,属中档题.16、【解析】三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用正弦定理,三角函数恒等变换,可得,结合范围,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面积公式即可求解;方法2:由正弦定理可得,,并将其代入可得,然后再化简,根据正弦函数的图象和性质即可求得面积的最大值.【详解】解:(I)因为,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以当且仅当时取等号,所以△ABC面积的最大值为方法2:因为,所以,,所以,所以,当且仅当,即,当时取等号.所以△ABC面积的最大值为.【点睛】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形的面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18、(1)见解析;(2)见解析.【解析】
(1)令,由求出的值,再令,由得,将两式相减并整理得,计算出为非零常数可证明出数列为等比数列;(2)由(1)得出,可得出,利用放缩法得出,利用等比数列求和公式分别求出数列和的前项和,从而可证明出所证不等式成立.【详解】(1)当时,,解得;当时,由得,上述两式相减得,整理得.则,且.所以,数列是首项为,公比为的等比数列;(2)由(1)可知,则.因为,所以.又因为,所以.综上,.【点睛】本题考查利用前项和求数列通项,考查等比数列的定义以及放缩法证明数列不等式,解题时要根据数列递推公式或通项公式的结构选择合适的方法进行求解,考查分析问题和解决问题的能力,属于中等题.19、(1)(2)【解析】
(1)由已知及正弦定理可得sinC的值,利用大边对大角可求C为锐角,根据同角三角函数基本关系式可求cosC的值.(2)利用三角形内角和定理,两角和的正弦函数公式可求sinB的值,根据三角形的面积公式即可计算得解.【详解】(1)由题意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C为锐角,∴cosC===,(2)因为A+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+=,∴S△ABC=BC•AB•sinB=.【点睛】本题主要考查了正弦定理,大边对大角,同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20、(1)证明见解析;(2)【解析】
(1)根据等腰三角形的性质,证得,由面面垂直的性质定理,证得平面,进而证得平面平面.(2)根据线面平行的性质定理,证得,平行线分线段成比例,由此求得的值.【详解】(1),为的中点,所以.又因为平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查线面平行的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度新能源汽车充电桩建设与运营合作协议合同范本3篇
- 课程设计用户管理系统
- 2025年度节能设备采购及安装合同能源管理范本3篇
- 海南外国语职业学院《动物组织解剖学》2023-2024学年第一学期期末试卷
- 2025年度园林景观材料采购合同规范3篇
- 海南师范大学《审计理论与实务研究》2023-2024学年第一学期期末试卷
- 二零二五年度文化产业共享用工合作协议范本3篇
- 2025年度物业管理处公共秩序维护委托服务合同范本3篇
- 二零二五年度城市综合体消防安全管理合作协议3篇
- 2025年度网络游戏商标形象授权合作合同2篇
- 《皮肤病中成药导引》课件
- 建筑公司2025年度工作总结和2025年工作安排计划
- 2023-2024学年广东省广州市越秀区九年级(上)期末物理试卷(含答案)
- 太空军事法律问题-洞察分析
- 2024年行政执法人员资格考试必考知识题库及答案(共250题)
- 电压损失计算表
- 二零二四年风力发电项目EPC总承包合同
- 汽车维修开发票协议书
- 旋挖买卖合同范例
- 安全检查汇报材料
- 2005年海南高考理科综合真题及答案
评论
0/150
提交评论