版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市新洲三中2023-2024学年高一数学第二学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个圆柱的底面直径与高都等于球的直径,设圆柱的侧面积为,球的表面积为,则()A. B. C. D.12.如果直线l过点(2,1),且在y轴上的截距的取值范围为(﹣1,2),那么l的斜率k的取值范围是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)3.曲线与过原点的直线没有交点,则的倾斜角的取值范围是()A. B. C. D.4.已知随机事件和互斥,且,.则()A. B. C. D.5.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.6.在ΔABC中,角A,B,C的对边分别为a,b,c,若sinA4a=A.-45 B.35 C.7.如图,在三角形中,点是边上靠近的三等分点,则()A. B.C. D.8.设不等式组所表示的平面区域为,在内任取一点,的概率是()A. B. C. D.9.圆与圆的位置关系是()A.相离 B.相交 C.相切 D.内含10.已知,,且,则在方向上的投影为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆及点,若满足:存在圆C上的两点P和Q,使得,则实数m的取值范围是________.12.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.13.已知三棱锥外接球的表面积为,面,则该三棱锥体积的最大值为____。14.已知函数f(x)的图象恒过定点P,则点P的坐标是____________.15.体积为8的一个正方体,其全面积与球的表面积相等,则球的体积等于________.16.已知,是夹角为的两个单位向量,向量,,若,则实数的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,且为第三象限角,求的值(2)已知,计算的值.18.如图所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)证明:⊥平面;(2)若,求点到平面的距离.19.已知函数(1)求函数的反函数;(2)解方程:.20.已知是等差数列,满足,,且数列的前n项和.(1)求数列和的通项公式;(2)令,数列的前n项和为,求证:.21.设函数.(1)若,解不等式;(2)若对一切实数,恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由圆柱的侧面积及球的表面积公式求解即可.【详解】解:设圆柱的底面半径为,则,则圆柱的侧面积为,球的表面积为,则,故选:D.【点睛】本题考查了圆柱的侧面积的求法,重点考查了球的表面积公式,属基础题.2、A【解析】
利用直线的斜率公式,求出当直线经过点时,直线经过点时的斜率,即可得到结论.【详解】设要求直线的斜率为,当直线经过点时,斜率为,当直线经过点时,斜率为,故所求直线的斜率为.故选:A.【点睛】本题主要考查直线的斜率公式,属于基础题.3、A【解析】
作出曲线的图形,得出各射线所在直线的倾斜角,观察直线在绕着原点旋转时,直线与曲线没有交点时,直线的倾斜角的变化,由此得出的取值范围.【详解】当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为.作出曲线的图象如下图所示:由图象可知,要使得过原点的直线与曲线没有交点,则直线的倾斜角的取值范围是,故选:A.【点睛】本题考查直线倾斜角的取值范围,考查数形结合思想,解题的关键就是作出图形,利用数形结合思想进行求解,属于中等题.4、D【解析】
根据互斥事件的概率公式可求得,利用对立事件概率公式求得结果.【详解】与互斥本题正确选项:【点睛】本题考查概率中的互斥事件、对立事件概率公式的应用,属于基础题.5、A【解析】
数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【点睛】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.6、B【解析】
由正弦定理可得3sinBsinA=4sin【详解】∵sinA4a∵sinA>0,∴tanB=4故选:B.【点睛】本题考查了正弦定理和同角三角函数的基本关系,属于基础题.7、A【解析】
利用向量的三角形法则以及线性运算法则进行运算,即可得出结论.【详解】因为点是边上靠近的三等分点,所以,所以,故选:A.【点睛】本题考查向量的加、减法以及数乘运算,需要学生熟练掌握三角形法则和共线定理.8、A【解析】作出约束条件所表示的平面区域,如图所示,四边形所示,作出直线,由几何概型的概率计算公式知的概率,故选A.9、B【解析】
计算圆心距,判断与半径和差的关系得到位置关系.【详解】圆心距相交故答案选B【点睛】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.10、C【解析】
通过数量积计算出夹角,然后可得到投影.【详解】,,即,,在方向上的投影为,故选C.【点睛】本题主要考查向量的几何背景,建立数量积方程是解题的关键,难度不大.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设出点P、Q的坐标,利用平面向量的坐标运算以及两圆相交的条件求出实数m的取值范围.【详解】设点,由得,由点在圆上,得,又在圆上,,与有交点,则,解得故实数m的取值范围为.故答案为:【点睛】本题考查了向量的坐标运算、利用圆与圆的位置关系求参数的取值范围,属于中档题.12、【解析】
根据题意到,联立方程得到,得到答案.【详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【点睛】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.13、【解析】
根据球的表面积计算出球的半径.利用勾股定理计算出三角形外接圆的半径,根据正弦定理求得的长,再根据圆内三角形面积的最大值求得三角形面积的最大值,由此求得三棱锥体积的最大值.【详解】画出图像如下图所示,其中是外接球的球心,是底面三角形的外心,.设球的半径为,三角形外接圆的半径为,则,故在中,.在三角形中,由正弦定理得.故三角形为等边三角形,其高为.由于为定值,而三角形的高等于时,三角形的面积取得最大值,由于为定值,故三棱锥的体积最大值为.【点睛】本小题主要考查外接球有关计算,考查三棱锥体积的最大值的计算,属于中档题.14、(2,4)【解析】
令x-1=1,得到x=2,把x=2代入函数求出定点的纵坐标得解.【详解】令x-1=1,得到x=2,把x=2代入函数得,所以定点P的坐标为(2,4).故答案为:(2,4)【点睛】本题主要考查对数函数的定点问题,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】
由体积为的一个正方体,棱长为,全面积为,则,,球的体积为,故答案为.考点:正方体与球的表面积及体积的算法.16、【解析】
由题意得,且,,由=,解得即可.【详解】已知,是夹角为的两个单位向量,所以,得,若解得故答案为【点睛】本题考查了向量数量积的运算性质,考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由,结合为第三象限角,即可得解;(2)由,代入求解即可.【详解】(1),∴,又∵是第三象限.∴(2).【点睛】本题主要考查了同角三角函数的基本关系,属于基础题.18、(1)见解析(2)【解析】
(1)通过⊥,⊥来证明;(2)根据等体积法求解.【详解】(1)证明:∵⊥平面,平面,∴⊥.又⊥,,平面,平面,∴⊥平面.(2)由已知得,所以且由(1)可知,由勾股定理得∵平面∴=,且∴,由,得∴即点到平面的距离为【点睛】本题考查线面垂直与点到平面的距离.线面垂直的证明要转化为线线垂直;点到平面的距离常规方法是作出垂线段求解,此题根据等体积法能简化计算.19、(1);(2)【解析】
(1)反解,然后交换的位置,写出原函数的值域即可得到结果;(2)代入原函数与反函数的解析式,解方程即可得到答案.【详解】(1)由得,得,因为,所以,所以.(2)由得2,所以,即,解得,所以,所以原方程的解集为.【点睛】本题考查了求反函数的解析式,考查了指数式与对数式的互化,属于中档题.20、(1),(2)证明见解析【解析】
(1)计算,得到,再计算的通项公式得到答案.(2),利用裂项求和得到得到证明.【详解】(1),,.,.是等差数列,所以,所以.当时,,又,所以,当时,,符合,所以的通项公式是.(2).所以,即.【点睛】本题考查了数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度住宅装修工程环保验收合同2篇
- 食品销售用工合同模板
- 2024年度互联网游戏开发与发行合作合同3篇
- 广西劳务派遣合同模板
- 2024年度文化创意产业项目合作协议
- 高淳区植物租赁合同范例
- 2024年度高品质变压器购买合同样本版B版
- 劳务合同模板全文
- 2024年期店铺合伙人权益保障合同版B版
- 陕西石油施工合同模板
- 公路水运工程施工安全标准化指南 pdf
- 房颤患者的护理
- 2023安全生产责任制考核制度附考核表
- 烟花爆竹考试真题模拟汇编(共758题)
- 国家开放大学应用写作(汉语)形考任务1-6答案(全)
- 学生家长陪餐制度及营养餐家长陪餐记录表
- 局部阻力系数计算表
- 森林计测学(测树学)智慧树知到答案章节测试2023年浙江农林大学
- 苏州某多层框架结构厂房施工组织设计(6层)
- 辽宁2023盛京银行公开招聘行长上岸提分题库3套【500题带答案含详解】
- 国开专科《人文英语 2》机考题库
评论
0/150
提交评论