版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届北京市昌平区临川育人学校数学高一下期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为().A. B.2 C. D.2.已知圆的圆心与点关于直线对称,直线与圆相交于,两点,且,则圆的半径长为()A. B. C.3 D.3.如图为A、B两名运动员五次比赛成绩的茎叶图,则他们的平均成绩和方差的关系是()A., B.,C., D.,4.已知点,,则直线的斜率是()A. B. C.5 D.15.若实数,满足约束条件,则的取值范围是()A. B. C. D.6.已知直三棱柱的所有顶点都在球0的表面上,,,则=()A.1 B.2 C. D.47.已知在中,为线段上一点,且,若,则()A. B. C. D.8.各项均为实数的等比数列{an}前n项之和记为,若,,则等于A.150 B.-200 C.150或-200 D.-50或4009.在四边形中,,且·=0,则四边形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形10.若直线平分圆的周长,则的值为()A.-1 B.1 C.3 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.在棱长均为2的三棱锥中,分别为上的中点,为棱上的动点,则周长的最小值为________.12.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.13.已知数列满足,若,则的所有可能值的和为______;14.设等差数列的前项和为,若,,则的最小值为______.15.已知、、分别是的边、、的中点,为的外心,且,给出下列等式:①;②;③;④其中正确的等式是_________(填写所有正确等式的编号).16.已知函数那么的值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面为平行四边形,点为中点,且.(1)证明:平面;(2)证明:平面平面.18.已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切,且被轴截得的弦长为,圆的面积小于13.(1)求圆的标准方程:(2)设过点的直线与圆交于不同的两点,,以,为邻边作平行四边形.是否存在这样的直线,使得直线与恰好平行?如果存在,求出的方程:如果不存在,请说明理由.19.已知,,求证:(1);(2).20.已知向量,其中,记函数,已知的最小正周期为.(1)求;(2)当时,试求函数的值域.21.己知函数.(1)若,,求;(2)当为何值时,取得最大值,并求出最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用三角形面积公式列出关系式,把,已知面积代入求出的长,再利用余弦定理即可求出的长.【详解】∵在中,,且的面积为,
∴,
解得:,
由余弦定理得:,
则.
故选D.【点睛】此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.2、A【解析】
根据题干画出简图,在直角中,通过弦心距和半径关系通过勾股定理求解即可。【详解】圆的圆心与点关于直线对称,所以,,设圆的半径为,如下图,圆心到直线的距离为:,,【点睛】直线和圆相交问题一般两种方法:第一,通过弦心距d和半径r的关系,通过勾股定理求解即可。第二,直线方程和圆的方程联立,则。两种思路,此题属于中档题型。3、D【解析】
根据题中数据,直接计算出平均值与方差,即可得出结果.【详解】由题中数据可得,,,所以;又,,所以.故选D【点睛】本题主要考查平均数与方差的比较,熟记公式即可,属于基础题型.4、D【解析】
根据直线的斜率公式,准确计算,即可求解,得到答案.【详解】由题意,根据直线的斜率公式,可得直线的斜率,故选D.【点睛】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.5、D【解析】画出表示的可行域,如图所示的开放区域,平移直线,由图可知,当直线经过时,直线在纵轴上的截距取得最大值,此时有最小值,无最大值,的取值范围是,故选A.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6、B【解析】
由题得在底面的投影为的外心,故为的中点,再利用数量积计算得解.【详解】依题意,在底面的投影为的外心,因为,故为的中点,,故选B.【点睛】本题主要考查平面向量的运算,意在考查学生对该知识的理解掌握水平,属于基础题.7、C【解析】
首先,由已知条件可知,再有,这样可用表示出.【详解】∵,∴,,∴,∴.故选C.【点睛】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.8、A【解析】
根据等比数列的前n项和公式化简S10=10,S30=70,分别求得关于q的两个关系式,可求得公比q的10次方的值,再利用前n项和公式计算S40即可.【详解】因为{an}是等比数列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案选A.【点睛】此题考查学生灵活运用等比数列的前n项和的公式化简求值,是一道综合题,有一定的运算技巧,需学生在练习中慢慢培养.9、A【解析】
由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.10、D【解析】
求出圆的圆心坐标,由直线经过圆心代入解得.【详解】解:所以的圆心为因为直线平分圆的周长所以直线过圆心,即解得,故选:D.【点睛】本题考查直线与圆的位置关系的综合应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
易证明中,且周长为,其中为定值,故只需考虑的最小值即可.【详解】由题,棱长均为2的三棱锥,故该三棱锥的四个面均为正三角形.又因为,故.故.且分别为上的中点,故.故周长为.故只需求的最小值即可.易得当时取得最小值为.故周长的最小值为.故答案为:【点睛】本题主要考查了立体几何中的距离最值问题,需要根据题意找到定量以及变量的最值情况即可.属于中档题.12、【解析】
绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【点睛】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.13、36【解析】
根据条件得到的递推关系,从而判断出的类型求解出可能的通项公式,即可计算出的所有可能值,并完成求和.【详解】因为,所以或,当时,是等差数列,,所以;当时,是等比数列,,所以,所以的所有可能值之和为:.故答案为:.【点睛】本题考查等差和等比数列的判断以及求数列中项的值,难度一般.已知数列满足(为常数),则是公差为的等差数列;已知数列满足,则是公比为的等比数列.14、【解析】
用基本量法求出数列的通项公式,由通项公式可得取最小值时的值,从而得的最小值.【详解】设数列公差为,则由已知得,解得,∴,,,又,、∴的最小值为.故答案为:..【点睛】本题考查等差数列的前项和的最值.首项为负且递增的等差数列,满足的最大的使得最小,首项为正且递减的等差数列,满足的最大的使得最大,当然也可把表示为的二次函数,由二次函数知识求得最值.15、①②④.【解析】
根据向量的中点性质与向量的加法运算,可判断①②③.【详解】、、分别是的边、、的中点,为的外心,且,设三条中线交点为G,如下图所示:对于①,由三角形中线性质及向量加法运算可知,所以①正确;对于②,,所以②正确;对于③,,所以③错误;对于,由外心性质可知,所以故正确.综上可知,正确的为①②④.故答案为:①②④.【点睛】本题考查了向量的线性运算,三角形外心的性质及应用,属于基础题.16、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析【解析】
(1)连接交于点,连接,可证,从而可证平面.(2)可证平面,从而得到平面平面.【详解】(1)连接交于点,连接,因为底面为平行四边形,所以为中点.在中,又为中点,所以.又平面,平面,所以平面.(2)因为底面为平行四边形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行.线面垂直的判定可由线线垂直得到,注意线线是相交的,也可由面面垂直得到,注意线在面内且线垂直于两个平面的交线.而面面垂直的证明可以通过线面垂直得到,也可以通过证明二面角是直二面角.18、(1).(2)不存在这样的直线.【解析】
试题分析:(I)用待定系数法即可求得圆C的标准方程;(Ⅱ)首先考虑斜率不存在的情况.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2).l与圆C相交于不同的两点,那么Δ>0.由题设及韦达定理可得k与x1、x2之间关系式,进而求出k的值.若k的值满足Δ>0,则存在;若k的值不满足Δ>0,则不存在.试题解析:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知解得a=1或a=,又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+y2=1.(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立消去y得:(1+k2)x2+(6k-2)x+6=0,∴Δ=(6k-2)2-21(1+k2)=3k2-6k-5>0,解得或.x1+x2=,y1+y2=k(x1+x2)+6=,,,假设∥,则,∴,解得,假设不成立.∴不存在这样的直线l.考点:1、圆的方程;2、直线与圆的位置关系.19、(1)证明见详解;(2)证明见详解.【解析】
(1)利用不等式性质,得,再证,最后证明;(2)先证,再证明.【详解】证明:(1)因为,所以,于是,即,由,得.(2)因为,所,又因为,所以,所以.【点睛】本题考查利用不等式性质证明不等式,需要熟练掌握不等式的性质,属综合基础题.20、(1)1(2)【解析】
(1)先根据向量数列积得关系式,再根据二倍角公式以及配角公式化为基本三角函数形式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川电影电视学院《非法干扰、扰乱行为》2021-2022学年第一学期期末试卷
- 石河子大学《影视作品赏析》2022-2023学年第一学期期末试卷
- 石河子大学《歌曲与旋律写作常识(1)》2023-2024学年第一学期期末试卷
- 石河子大学《版画》2021-2022学年第一学期期末试卷
- 沈阳理工大学《数据结构》2022-2023学年期末试卷
- 沈阳理工大学《科技文献检索》2023-2024学年第一学期期末试卷
- 大学校医院工作总结
- 沈阳理工大学《化工原理》2021-2022学年第一学期期末试卷
- 规范合同管理流程的通知
- 合肥住房租赁合同
- 宣讲《铸牢中华民族共同体意识》全文课件
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 国开2024年《钢结构(本)》阶段性学习测验1-4答案
- GB/T 2471-2024电阻器和电容器优先数系
- 高三化学二轮复习+《有机合成与推断》之有机方程式书写总汇++
- 工程总承包(EPC)施工组织设计
- 2016年7月自考00324人事管理学试题及答案含解析
- 2024年度-财务管理PPT模板
- 人工智能专业生涯发展展示
- 保险公司员转正的心得体会3篇
- 小学三年级数独比赛“六宫”练习题(88道)
评论
0/150
提交评论