版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃省兰州大学附中数学高一下期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列关于极限的计算,错误的是()A.B.C.D.已知,则2.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年3.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.4.已知数列的前项和,则的值为()A.-199 B.199 C.-101 D.1015.三条线段的长分别为5,6,8,则用这三条线段A.能组成直角三角形 B.能组成锐角三角形C.能组成钝角三角形 D.不能组成三角形6.已知=(2,3),=(3,t),=1,则=A.-3 B.-2C.2 D.37.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.8.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”9.已知为等比数列的前项和,,,则A. B. C. D.1110.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若向量与垂直,则__________.12.在等比数列中,若,则等于__________.13.若,且,则是第_______象限角.14.函数的定义域是________15.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.16.函数在的递减区间是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,.(1)若,求的值;(2)设,若恒成立,求的取值范围.18.已知点、、(),且.(1)求函数的解析式;(2)如果当时,两个函数与的图象有两个交点,求的取值范围.19.已知向量,满足,,.(1)求向量,所成的角的大小;(2)若,求实数的值.20.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?21.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:月销售产品件数300400500600700次数24954把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先计算每个极限,再判断,如果是数列和的极限还需先求和,再求极限.【详解】,A正确;∵,∴,B错;,C正确;若,需按奇数项和偶数项分别求和后再极限,即,D正确.故选:B.【点睛】本题考查数列的极限,掌握极限运算法则是解题基础.在求数列前n项和的极限时,需先求出数列的前n项和,再对和求极限,不能对每一项求极限再相加.2、C【解析】
天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.4、D【解析】
由特点可采用并项求和的方式求得.【详解】本题正确选项:【点睛】本题考查并项求和法求解数列的前项和,属于基础题.5、C【解析】
先求最大角的余弦,再得到三角形是钝角三角形.【详解】设最大角为,所以,所以三角形是钝角三角形.故选C【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.6、C【解析】
根据向量三角形法则求出t,再求出向量的数量积.【详解】由,,得,则,.故选C.【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.7、B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.8、C【解析】
结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.9、C【解析】
由题意易得数列的公比代入求和公式计算可得.【详解】设等比数列公比为q,,则,解得,,故选:C.【点睛】本题考查等比数列的求和公式和通项公式,求出数列的公比是解决问题的关键,属基础题.10、D【解析】
作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,所以,解得.12、【解析】
由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.13、三【解析】
利用二倍角公式计算出的值,结合判断出角所在的象限.【详解】由二倍角公式得,又,因此,是第三象限角,故答案为三.【点睛】本题考查利用三角函数值的符号与角的象限之间的关系,考查了二倍角公式,对于角的象限与三角函数值符号之间的关系,充分利用“一全二正弦、三切四余弦”的规律来判断,考查分析问题与解决问题的能力,属于中等题.14、【解析】
根据的值域为求解即可.【详解】由题.故定义域为.故答案为:【点睛】本题主要考查了反三角函数的定义域,属于基础题型.15、1【解析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.16、【解析】
利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由,转化为,利用弦化切的思想得出的值,从而求出的值;(2)由,转化为,然后利用平面向量数量积的坐标运算律和辅助角公式与函数的解析式进行化简,并求出在区间的最大值,即可得出实数的取值范围.【详解】(1)∵,且,,,∴,即,又∵,∴;(2)易知,,∵,∴,,当时,,取得最大值:,又恒成立,即,故.【点睛】本题考查平面向量数量积的坐标运算,考查三角函数的最值,在求解含参函数的不等式恒成立问题,可以利用参变量分离法,转化为函数的最值来求解,考查转化与化归数学思想,考查计算能力,属于中等题.18、(1);(2)【解析】
(1)根据向量坐标以及向量的数量积公式求出,利用辅助角公式即可求的解析式;(2),求出的范围,令,,则画函数图象,由两个函数与的图象有两个交点,建立不等关系即可求的值.【详解】解:(1),,,,,则,即;(2)因为,,令,,则画函数图象如下所示:,要使两个函数与的图象有两个交点,则,,解得解得.【点睛】本题主要考查三角函数的化简和求值,利用向量的数量积公式结合三角函数的辅助角公式将函数进行化简是解决本题的关键.19、(1)(2)【解析】
(1)化简即得向量,所成的角的大小;(2)由,可得,化简即得解.【详解】解:(1)由,可得.即,因为,所以,又因为,,代入上式,可得,即.(2)由,可得.即,则,得.【点睛】本题主要考查数量积的运算和向量的模的运算,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1),;(2).【解析】
(1)根据正弦定理,得到,进而可求出结果;(2)由余弦定理,得到,结合题中数据,得到,取最大值时,噪声对居民影响最小,即可得出结果.【详解】(1)因为,在中,由正弦定理可得:,所以,;(2)由题意,由余弦定理可得:,又由(1)可得,所以,当且仅当,即时,取得最大值,工厂产生的噪声对居民影响最小,此时.【点睛】本题主要考查正弦定理与余弦定理的应用,熟记正弦定理与余弦定理即可,属于常考题型.21、(1);(2)方案一概率为,方案二概率为.【解析】
(1)利用一次函数和分段函数分别表示方案一、方案二的月工资与的关系式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能充电桩施工安装服务合同范本4篇
- 2025年中国纱库支架行业市场发展前景及发展趋势与投资战略研究报告
- 2024版研究生实习合同模板2篇
- 2025年度公共安全设施招标文件编制及安全性能评估服务合同3篇
- 狗仔扣钥匙链行业行业发展趋势及投资战略研究分析报告
- 2025年水资源利用项目投产资金借贷合同3篇
- 2025年度个人健康数据共享合同范本3篇
- 2025年度个人农业贷款抵押合同示范文本4篇
- 2025年挖掘机采购与专业人才引进合同3篇
- 2025年度个人入股分红合作开发项目合同4篇
- 机械点检员职业技能知识考试题库与答案(900题)
- 成熙高级英语听力脚本
- 北京语言大学保卫处管理岗位工作人员招考聘用【共500题附答案解析】模拟试卷
- 肺癌的诊治指南课件
- 人教版七年级下册数学全册完整版课件
- 商场装修改造施工组织设计
- (中职)Dreamweaver-CC网页设计与制作(3版)电子课件(完整版)
- 统编版一年级语文上册 第5单元教材解读 PPT
- 中班科学《会说话的颜色》活动设计
- 加减乘除混合运算600题直接打印
- ASCO7000系列GROUP5控制盘使用手册
评论
0/150
提交评论