版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省泰州市泰州栋梁学校2023-2024学年高一数学第二学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,长方体中,,,那么异面直线与所成角的余弦值是()A. B. C. D.2.已知数列中,,则=()A. B. C. D.3.设是△所在平面内的一点,且,则△与△的面积之比是()A. B. C. D.4.已知是的共轭复数,若复数,则在复平面内对应的点是()A. B. C. D.5.已知,,,,则下列等式一定成立的是()A. B. C. D.6.已知不同的两条直线m,n与不重合的两平面,,下列说法正确的是()A.若,,则B.若,,则C.若,,则D.若,,则7.已知数列,如果,,,……,,……,是首项为1,公比为的等比数列,则=A. B. C. D.8.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”9.若,,则等于()A. B. C. D.10.《趣味数学·屠夫列传》中有如下问题:“戴氏善屠,日益功倍。初日屠五两,今三十日屠讫,问共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?”()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某公司当月购进、、三种产品,数量分别为、、,现用分层抽样的方法从、、三种产品中抽出样本容量为的样本,若样本中型产品有件,则的值为_______.12.若等比数列的各项均为正数,且,则等于__________.13.设x、y满足约束条件,则的取值范围是______.14.设满足约束条件,则目标函数的最大值为______.15.设a>0,角α的终边经过点P(﹣3a,4a),那么sinα+2cosα的值等于.16.三阶行列式中,元素4的代数余子式的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象过点,,.(1)求,的值;(2)若,且,求的值;(3)若在上恒成立,求实数的取值范围.18.已知两个不共线的向量a,b满足,,.(1)若,求角θ的值;(2)若与垂直,求的值;(3)当时,存在两个不同的θ使得成立,求正数m的取值范围.19.如图,三棱柱的侧面是边长为2的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.20.已知.(1)求函数的最小正周期;(2)求函数在闭区间上的最小值并求当取最小值时,的取值.21.已知直线经过两条直线和的交点,且与直线垂直.(1)求直线的方程;(2)若圆的圆心为点,直线被该圆所截得的弦长为,求圆的标准方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
可证得四边形为平行四边形,得到,将所求的异面直线所成角转化为;假设,根据角度关系可求得的三边长,利用余弦定理可求得余弦值.【详解】连接,四边形为平行四边形异面直线与所成角即为与所成角,即设,,,,在中,由余弦定理得:异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解问题,关键是能够通过平行关系将问题转化为相交直线所成角,在三角形中利用余弦定理求得余弦值.2、B【解析】
,故选B.3、B【解析】试题分析:依题意,得,设点到的距离为,所以与的面积之比是,故选B.考点:三角形的面积.4、A【解析】由,得,所以在复平面内对应的点为,故选A.5、B【解析】试题分析:相除得,又,所以.选B.【考点定位】指数运算与对数运算.6、C【解析】
依次判断每个选项的正误得到答案.【详解】若,,则或A错误.若,,则或,B错误若,,则,正确若,,则或,D错误故答案选C【点睛】本题考查了线面关系,找出反例是解题的关键.7、A【解析】分析:累加法求解。详解:,,解得点睛:形如的模型,求通项公式,用累加法。8、C【解析】
结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.9、C【解析】
直接用向量的坐标运算即可得到答案.【详解】由,.故选:C【点睛】本题考查向量的坐标运算,属于基础题.10、D【解析】
根据题意,得到该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,由题中熟记,以及等比数列的求和公式,即可得出结果.【详解】由题意,该屠户每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此.故选:D【点睛】本题主要考查等比数列的应用,熟记等比数列的求和公式即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
利用分层抽样每层抽样比和总体的抽样比相等,列等式求出的值.【详解】在分层抽样中,每层抽样比和总体的抽样比相等,则有,解得,故答案为:.【点睛】本题考查分层抽样中的相关计算,解题时要充分利用各层抽样比与总体抽样比相等这一条件列等式求解,考查运算求解能力,属于基础题.12、50【解析】由题意可得,=,填50.13、【解析】
由约束条件可得可行域,将问题转化为在轴截距取值范围的求解;通过直线平移可确定的最值点,代入点的坐标可求得最值,进而得到取值范围.【详解】由约束条件可得可行域如下图阴影部分所示:将的取值范围转化为在轴截距的取值范围问题由平移可知,当过图中两点时,在轴截距取得最大和最小值,,的取值范围为故答案为:【点睛】本题考查线性规划中的取值范围问题的求解,关键是能够将问题转化成直线在轴截距的取值范围的求解问题,通过数形结合的方式可求得结果.14、7【解析】
首先画出可行域,然后判断目标函数的最优解,从而求出目标函数的最大值.【详解】如图,画出可行域,作出初始目标函数,平移目标函数,当目标函数过点时,目标函数取得最大值,,解得,.故填:7.【点睛】本题考查了线性规划问题,属于基础题型.15、﹣【解析】试题分析:利用任意角三角函数定义求解.解:∵a>0,角α的终边经过点P(﹣3a,4a),∴x=﹣3a,y=4a,r==5a,∴sinα+2cosα==﹣.故答案为﹣.考点:任意角的三角函数的定义.16、6【解析】
利用代数余子式的定义直接求解.【详解】三阶行列式中,元素4的代数余子式的值为:.故答案为:6.【点睛】本题主要考查了三阶行列式中元素的代数余子式的求法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】
(1)根据,,两点可确定,的值;(2)由(1)知,,求出,的值,然后根据,求出其值即可;(3)在,上恒成立,只需,求出在,上的最大值即可.【详解】(1)由得:,即,由知,,,由得:,即,即,由得,,所以;(2)由得:,即,由得:,(3)由得:,当时,,实数的取值范围为.【点睛】本题主要考查了三角函数的图象与性质,三角函数值的求法,以及在闭区间上的三角函数的值域问题的求法,意在考查学生整体思想以及转化与化归思想的应用能力.18、(1)(2)(3)【解析】
(1)由题得,再写出方程的解即得解;(2)先求出,再利用向量的模的公式求出;(3)等价于在有两解,结合三角函数分析得解.【详解】(1)由题得所以角的集合为.(2)由条件知,,又与垂直,所以,所以.所以,故.(3)由,得,即,即,,所以.由得,又要有两解,结合三角函数图象可得,,即,又因为,所以.即m的范围.【点睛】本题主要考查向量平行垂直的坐标表示,考查向量的模的计算,考查三角函数图像和性质的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(1)见解析(2)【解析】
(1)连结,交于点,连结,推导出,又,从而面,进而,推导出,由此能得到结论;(2)由题意,可证得是二面角的平面角,进而得,进而计算得,进而利用棱锥的体积公式计算即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以面而平面,所以,因为,所以,而,所以,故.(2)因为,为的中点,则,由(1)可知,因为,所以面,作,连结,由(1)知,所以且所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本题考查两个角相等的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.20、(1);(2),【解析】
(1)先化简,再求最小正周期;(2)由,得,再结合的函数图像求最小值.【详解】(1),即,所以的最小正周期是;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 16281:2025 EN Rolling bearings - Methods for calculating the modified reference rating life for universally loaded rolling bearings
- 箱子材料成型课程设计
- 生物数字化课程设计
- 公司薪酬福利管理制度
- 发展集团财务管理管控规章制度汇编
- 研究生幼儿游戏课程设计
- 继电器电路控制课程设计
- 住院部护理工作总结
- 泰拳系统课程设计案例
- 2025年高考历史一轮复习之经济发展与社会进步
- 2022版义务教育物理课程标准
- 数字资产管理与优化考核试卷
- 期末测试-2024-2025学年语文四年级上册统编版
- 教案-“枚举法”信息技术(信息科技)
- 2024年内部审计年度工作计划范文(六篇)
- 四川省成都市2021-2022学年物理高一下期末学业质量监测模拟试题含解析
- 光伏发电系统租赁合同范本
- 新教科版六年级上册科学全册知识点(期末总复习资料)
- 绿色建筑工程监理实施细则
- 2024年安全员b证继续教育考试
- 科研伦理与学术规范期末考试试题
评论
0/150
提交评论