天津市滨海新区天津开发区第一中学2024年高一下数学期末监测试题含解析_第1页
天津市滨海新区天津开发区第一中学2024年高一下数学期末监测试题含解析_第2页
天津市滨海新区天津开发区第一中学2024年高一下数学期末监测试题含解析_第3页
天津市滨海新区天津开发区第一中学2024年高一下数学期末监测试题含解析_第4页
天津市滨海新区天津开发区第一中学2024年高一下数学期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市滨海新区天津开发区第一中学2024年高一下数学期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正方体的棱长为,点,在上运动,,四面体的体积为,则()A. B. C. D.2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”3.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数4.已知函数,则函数的最小正周期为()A. B. C. D.5.已知等差数列的公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A.1 B.2 C.3 D.46.设,则()A. B.C. D.7.在中,分别是角的对边,,则角为()A. B. C. D.或8.已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是()A. B.C. D.9.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.10.设,且,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).12.数列满足,,,则数列的通项公式______.13.若,则_______.14.已知,则的值为.15.中,若,,,则的面积______.16.已知向量,且,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线与圆相交于,两点.(1)若,求;(2)在轴上是否存在点,使得当变化时,总有直线、的斜率之和为0,若存在,求出点的坐标:若不存在,说明理由.18.已知,.(1)求;(2)求.19.已知函数.(1)求的最小正周期和最大值;(2)求在上的单调区间20.记Sn为等差数列an的前n项和,已知(1)求an(2)求Sn,并求S21.在中,角所对的边分别为.且.(1)求的值;(2)若,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题意得,到平面的距离不变=,且,即可得三棱锥的体积,利用等体积法得.【详解】正方体的棱长为,点,在上运动,,如图所示:点到平面的距离=,且,所以.所以三棱锥的体积=.利用等体积法得.故选:C.【点睛】本题考查了正方体的性质,等体积法求三棱锥的体积,属于基础题.2、C【解析】

结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.3、B【解析】

利用折线图的性质,结合各选项进行判断,即可得解.【详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误;在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确;在中,由折线图无法预测16日温度要是否低于,故错误;在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误.故选.【点睛】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.4、D【解析】

根据二倍角公式先化简,再根据即可。【详解】由题意得,所以周期为.所以选择D【点睛】本题主要考查了二倍角公式;常考的二倍角公式有正弦、余弦、正切。属于基础题。5、B【解析】

对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【点睛】本题考查用定义判断数列的单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.6、A【解析】

先由诱导公式得到a=cos2019°=–cos39°,再根据39°∈(30°,45°)得到大致范围.【详解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故选A.【点睛】这个题目考查了三角函数的诱导公式的应用,以及特殊角的三角函数值的应用,题目比较基础.7、D【解析】

由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解析】试题分析:因为与正相关,排除选项C、D,又因为线性回归方程恒过样本点的中心,故排除选项B;故选A.考点:线性回归直线.9、A【解析】

根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【点睛】本题考查了统计案例散点图,属于基础题.10、D【解析】

本题首先可将转化为,然后将其化简为,最后利用基本不等式即可得出结果.【详解】,当且仅当,即时成立,故选D.【点睛】本题考查利用基本不等式求最值,基本不等式公式为,考查化归与转化思想,是简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.76【解析】

将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.【考点】中位数的概念【点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.12、【解析】

由题意得出,利用累加法可求出.【详解】数列满足,,,,因此,.故答案为:.【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.13、【解析】

对两边平方整理即可得解.【详解】由可得:,整理得:所以【点睛】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.14、【解析】

利用商数关系式化简即可.【详解】,故填.【点睛】利用同角的三角函数的基本关系式可以化简一些代数式,常见的方法有:(1)弦切互化法:即把含有正弦和余弦的代数式化成关于正切的代数式,也可以把含有正切的代数式化为关于余弦和正弦的代数式;(2)“1”的代换法:有时可以把看成.15、【解析】

利用三角形的面积公式可求出的面积的值.【详解】由三角形的面积公式可得.故答案为:.【点睛】本题考查三角形面积的计算,熟练利用三角形的面积公式是计算的关键,考查计算能力,属于基础题.16、【解析】

先由向量共线,求出,再由向量模的坐标表示,即可得出结果.【详解】因为,且,所以,解得,所以,因此.故答案为【点睛】本题主要考查求向量的模,熟记向量共线的坐标表示,以及向量模的坐标表示即可,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)存在.【解析】

(1)由题得到的距离为,即得,解方程即得解;(2)设,,存在点满足题意,即,把韦达定理代入方程化简即得解.【详解】(1)因为圆,所以圆心坐标为,半径为2,因为,所以到的距离为,由点到直线的距离公式可得:,解得.(2)设,,则得,因为,所以,,设存在点满足题意,即,所以,因为,所以,所以,解得.所以存在点符合题意.【点睛】本题主要考查直线和圆的位置关系,考查直线和圆的探究性问题的解答,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1),(2)【解析】

(1)由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值(2)由题意利用二倍角公式,求得原式子的值.【详解】(1)∵已知,,,∴则(2)【点睛】本题主要考查同角三角函数的基本关系,两角和差的三角公式、二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.19、(1)f(x)的最小正周期为π,最大值为;(2)f(x)在上单调递增;在上单调递减.【解析】

(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和最值求得的最小正周期和最大值.(2)根据,利用正弦函数的单调性,即可求得在上的单调区间.【详解】解:(1)函数,即故函数的周期为,最大值为.(2)当时,,故当时,即时,为增函数;当时,即时,为减函数;即函数在上单调递增;在上单调递减.【点睛】本题主要考查三角恒等变换,正弦函数的周期性和最值,正弦函数的单调性,属于中档题.20、(1)an=2n-12;(2)Sn【解析】

(1)设等差数列an的公差为d,根据题意求出d(2)根据等差数列的前n项和公式先求出Sn,再由an=2n-12≥0【详解】(1)因为数列an为等差数列,设公差为d由a3=-6,a6=0所以an(2)因为Sn为等差数列an的前所以Sn由an=2n-12≥0得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论