版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平面向量全真试题专项解析-2024届高一数学第二学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量=(1,-3),=(4,-2),与垂直,则是()A.2 B.1 C.-2 D.-12.已知点G为的重心,若,,则=()A. B. C. D.3.已知各项为正数的等比数列中,,,则公比q=A.4 B.3 C.2 D.4.一几何体的三视图如图所示,则该几何体的表面积为()A.16 B.20 C.24 D.285.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.6.如图所示,某汽车品牌的标志可看作由两个同心圆构成,其中大、小圆的半径之比为,小圆内部被两条互相垂直的直径分割成四块.在整个图形中任选一点,则该点选自白色部分的概率为()A. B. C. D.7.已知函数的部分图象如图所示,则此函数的解析式为()A. B.C. D.8.在三棱锥中,,二面角的大小为,则三棱锥的外接球的表面积为()A. B. C. D.9.已知1,a,b,c,5五个数成等比数列,则b的值为()A. B. C. D.310.已知,,则的最大值为()A.9 B.3 C.1 D.27二、填空题:本大题共6小题,每小题5分,共30分。11.经过两圆和的交点的直线方程为______.12.在区间上,与角终边相同的角为__________.13.在中,,,面积为,则________.14.已知三棱锥(如图所示),平面,,,,则此三棱锥的外接球的表面积为______.15.已知与的夹角为,,,则________.16.已知,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.18.一汽车厂生产,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.轿车轿车轿车舒适型100150标准型300450600(1)求的值;(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8辆轿车的得分看作一个总体,从中任取一个得分数,
记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.19.已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中0为原点。(1)求证:的面积为定值;(2)设直线与圆C交于点M,N,若,求圆C的方程.20.为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率21.如图,直三棱柱中,,,,,为垂足.(1)求证:(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
试题分析:,由与垂直可知考点:向量垂直与坐标运算2、B【解析】
由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【详解】设是中点,则,又为的重心,∴.故选B.【点睛】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.3、C【解析】
由,利用等比数列的性质,结合各项为正数求出,从而可得结果.【详解】,,,,故选C.【点睛】本题主要考查等比数列的性质,以及等比数列基本量运算,意在考查灵活运用所学知识解决问题的能力,属于简单题.4、B【解析】
根据三视图可还原几何体,根据长度关系依次计算出各个侧面和上下底面的面积,加和得到表面积.【详解】有三视图可得几何体的直观图如下图所示:其中:,,,则:,,,,几何体表面积:本题正确选项:【点睛】本题考查几何体表面积的求解问题,关键是能够根据三视图准确还原几何体,从而根据长度关系可依次计算出各个面的面积.5、A【解析】
求出函数的周期,函数的奇偶性,判断求解即可.【详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A.考点:三角函数的性质.6、B【解析】
设大圆半径为,小圆半径为,求出白色部分面积和大圆面积,由几何概型概率公式可得.【详解】设大圆半径为,小圆半径为,则整个图形的面积为,白色部分的面积为,所以所求概率.故选:B.【点睛】本题考查几何概型,考查面积型的几何概型,属于基础题.7、B【解析】
由图象可知,所以,又因为,所以所求函数的解析式为.8、D【解析】
取AB中点F,SC中点E,设的外心为,外接圆半径为三棱锥的外接球球心为,由,在四边形中,设,外接球半径为,则则可求,表面积可求【详解】取AB中点F,SC中点E,连接SF,CF,因为则为二面角的平面角,即又设的外心为,外接圆半径为三棱锥的外接球球心为则面,由在四边形中,设,外接球半径为,则则三棱锥的外接球的表面积为故选D【点睛】本题考查二面角,三棱锥的外接球,考查空间想象能力,考查正弦定理及运算求解能力,是中档题9、A【解析】
根据等比数列奇数项也成等比数列,求解.【详解】因为1,a,b,c,5五个数成等比数列,所以也成等比数列,等比数列奇数项的符号一致,,.故选A.【点睛】本题考查了等比数列的基本性质,属于简单题型,但需注意这个隐含条件.10、B【解析】
由已知,可利用柯西不等式,构造柯西不等式,即可求解.【详解】由已知,可知,,利用柯西不等式,可构造得,即,所以的最大值为3,故选B.【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用圆系方程,求解即可.【详解】设两圆和的交点分别为,则线段是两个圆的公共弦.令,,两式相减,得,即,故线段所在直线的方程为.【点睛】本题考查圆系方程的应用,考查计算能力.12、【解析】
根据与终边相同的角可以表示为这一方法,即可得出结论.【详解】因为,所以与角终边相同的角为.【点睛】本题考查终边相同的角的表示方法,考查对基本概念以及基本知识的熟练程度,考查了数学运算能力,是简单题.13、【解析】
由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.14、【解析】
由于图形特殊,可将图形补成长方体,从而求长方体的外接球表面积即为所求.【详解】,,,,平面,将三棱锥补形为如图的长方体,则长方体的对角线,则【点睛】本题主要考查外接球的相关计算,将图形补成长方体是解决本题的关键,意在考查学生的划归能力及空间想象能力.15、3【解析】
将平方再利用数量积公式求解即可.【详解】因为,故.化简得.因为,故.故答案为:3【点睛】本题主要考查了模长与数量积的综合运用,经常利用平方去处理.属于基础题.16、【解析】
由已知结合同角三角函数基本关系式可得,然后分子分母同时除以求解.【详解】,.故答案为:.【点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础的计算题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】分析:(1)利用的关系,求解;倒序相加求。(2)先用错位相减求,分离参数,使得对于一切的恒成立,转化为求的最值。详解:(1)时满足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立对于一切的恒成立,即,令,则当且仅当时等号成立,故所以为所求.点睛:1、,一定要注意,当时要验证是否满足数列。2、等比乘等差结构的数列用错位相减。3、数列中的恒成立问题与函数中的恒成立问题解法一致。18、(1)400;(2);(3)【解析】
(1)由分层抽样按比例可得;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.(3)求出,确定事件所含的个数后可得概率.【详解】(1)由题意,解得;(2)C类产品中舒适型和标准型产品数量比为,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,任取2辆的基本事件有:共10个,其中至少有1辆舒适型轿车的基本事件有共7个,所求概率为.(3)由题意,满足的有共6个,函数没有零点,则,解得,再去掉,还有4个,∴所求概率为.【点睛】本题考查分层抽样,考查古典概型,解题关键是用列举法写出所有的基本事件.19、(1)见解析(2)或【解析】
(1)先计算半径,得到圆方程,再计算AB坐标,计算的面积得到答案.(2)根据计算得到答案.【详解】(1),过原点取取为定值.(2)设直线与圆C交于点M,N,若设中点为,连接圆心在上圆C的方程为:或【点睛】本题考查了三角形面积,直线和圆的位置关系,意在考查学生的计算能力.20、(1),,,;(2)分边抽取2,3,1人;(3).【解析】
(1)根据数据表和频率分布直方图可计算得到第组的人数和频率,从而可得总人数;根据总数、频率和频数的关系,可分别计算得到所求结果;(2)首先确定第组的总人数,根据分层抽样原则计算即可得到结果;(3)首先计算得到基本事件总数;再计算出恰好没有年龄段在包含的基本事件个数,根据古典概型概率公式可求得结果.【详解】(1)第组的人数为:人,第组的频率为:第一组的频率为第一组的人数为:第二组的频率为第二组的人数为:第三组的频率为第三组的人数为:第五组的频率为第五组的人数为:(2)第组的总人数为:人第组抽取的人数为:人;第组抽取的人数为:人;第组抽取的人数为:人(3)在(2)中抽取的人中随机抽取人,基本事件总数为:所抽取的人中恰好没有年龄段在包含的基本事件个数为:所抽取的人中恰好没有年龄段在的概率:【点睛】本题考查利用频率分布直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版劳动人事争议仲裁院劳动争议调解员培训合同3篇
- 2024年防雷系统设备施工协议模板版B版
- 2025年度地热井井筒钻探技术服务合同2篇
- 2025年白蚁防制与景观生态修复服务合作协议2篇
- 2025版航空航天器燃料添加剂研发与应用合同集锦2篇
- 2025年混凝土汽车泵租赁与工程进度监控合同3篇
- 2025版装配式建筑厂房土建施工总承包协议11篇
- 2024年甲乙双方基于婚外情的离婚协议
- 2024年版软件购买合同协议范本及属性
- 2024年中国大型全热风无铅回流焊市场调查研究报告
- 数值分析智慧树知到期末考试答案2024年
- 高效全自动净水器操作使用说明
- 伯努利方程逐段试算法求水库回水
- ppt素材――小图标 可直接使用
- 30课时羽毛球教案
- 学术英语写作范文17篇
- 任发改委副主任挂职锻炼工作总结范文
- 2021年人事部年度年终工作总结及明年工作计划
- 针灸治疗学题库(精品课件)
- 帝纳波利点位交易法.doc
- 某涂料公司员工手册(可编辑)
评论
0/150
提交评论