2024届黑龙江七台河市高一数学第二学期期末达标检测试题含解析_第1页
2024届黑龙江七台河市高一数学第二学期期末达标检测试题含解析_第2页
2024届黑龙江七台河市高一数学第二学期期末达标检测试题含解析_第3页
2024届黑龙江七台河市高一数学第二学期期末达标检测试题含解析_第4页
2024届黑龙江七台河市高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江七台河市高一数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点斜率为-3的直线的一般式方程为()A. B.C. D.2.已知直线与互相垂直,垂足坐标为,且,则的最小值为()A.1 B.4 C.8 D.93.将函数的图像先向右平移个单位,再将所得的图像上每个点的横坐标变为原来的倍,得到的图像,则的可能取值为()A. B. C. D.4.角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.对于复数,定义映射.若复数在映射作用下对应复数,则复数在复平面内对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限6.已知的三个内角所对的边分别为.若,则该三角形的形状是()A.等边三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形7.已知点A(-1,1)和圆C:(x﹣5)2+(y﹣7)2=4,一束光线从A经x轴反射到圆C上的最短路程是A.6-2 B.8 C.4 D.108.数列的通项公式,则()A. B. C.或 D.不存在9.不等式的解集为,则的值为(

)A. B.C. D.10.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的部分图象如图所示,则_______.12.已知角的终边上一点P的坐标为,则____.13.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.14.已知等比数列an中,a3=2,a15.已知正实数x,y满足,则的最小值为________.16.382与1337的最大公约数是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前n项和为,且,.(1)求的通项公式;(2)若,且,,成等比数列,求k的值.18.已知中,角的对边分别为.(1)若依次成等差数列,且公差为2,求的值;(2)若的外接圆面积为,求周长的最大值.19.已知,,分别为三个内角,,的对边,.(1)求角的大小;(2)若,的面积为,求边,.20.已知四棱锥中,平面,,,,是线段的中点.(1)求证:平面;(2)试在线段上确定一点,使得平面,并加以证明.21.在平面立角坐标系中,过点的圆的圆心在轴上,且与过原点倾斜角为的直线相切.(1)求圆的标准方程;(2)点在直线上,过点作圆的切线、,切点分别为、,求经过、、、四点的圆所过的定点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.2、B【解析】

代入垂足坐标,可得,然后根据基本不等式,可得结果.【详解】由两条直线的交点坐标为所以代入可得,即又,所以即当且仅当,即时,取等号故选:B【点睛】本题主要考查基本不等式,属基础题.3、D【解析】由题意结合辅助角公式有:,将函数的图像先向右平移个单位,所得函数的解析式为:,再将所得的图像上每个点的横坐标变为原来的倍,所得函数的解析式为:,而,据此可得:,据此可得:.本题选择D选项.4、C【解析】

由,即可判断.【详解】,则与的终边相同,则角的终边落在第三象限故选:C【点睛】本题主要考查了判断角的终边所在象限,属于基础题.5、A【解析】,对应点,在第四象限.6、B【解析】

利用三角形的内角关系及三角变换公式得到,从而得到,此三角形的形状可判断.【详解】因为,故,整理得到,所以,因,所以即,故为等腰三角形,故选B.【点睛】本题考查两角和、差的正弦,属于基础题,注意角的范围的讨论.7、B【解析】

点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,光线从点A经x轴反射到圆周C的路程最短,最短为|BC|﹣R.【详解】由反射定律得点A(﹣1,1)关于x轴的对称点B(﹣1,﹣1)在反射光线上,当反射光线过圆心时,最短距离为|BC|﹣R=﹣2=10﹣2=1,故光线从点A经x轴反射到圆周C的最短路程为1.故选B.【点睛】本题考查光线的反射定律的应用,以及两点间的距离公式的应用.8、B【解析】

因为趋于无穷大,故,分离常数即可得出极限.【详解】解:因为的通项公式,要求,即求故选:B【点睛】本题考查数列的极限,解答的关键是消去趋于无穷大的式子.9、B【解析】

根据一元二次不等式解集与对应一元二次方程根的关系列方程组,解得a,c的值.【详解】由题意得为方程两根,所以,选B.【点睛】一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.10、B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由图可得,即可求得:,再由图可得:当时,取得最大值,即可列方程,整理得:,解得:(),结合即可得解.【详解】由图可得:,所以,解得:由图可得:当时,取得最大值,即:整理得:,所以()又,所以【点睛】本题主要考查了三角函数图象的性质及观察能力,还考查了转化思想及计算能力,属于中档题.12、【解析】

由已知先求,再由三角函数的定义可得即可得解.【详解】解:由题意可得点到原点的距离,,由三角函数的定义可得,,,此时;故答案为.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.13、【解析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力14、4【解析】

先计算a5【详解】aaa故答案为4【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.15、4【解析】

将变形为,展开,利用基本不等式求最值.【详解】解:,当时等号成立,又,得,此时等号成立,故答案为:4.【点睛】本题考查基本不等式求最值,特别是掌握“1”的妙用,是基础题.16、191【解析】

利用辗转相除法,求382与1337的最大公约数.【详解】因为,,所以382与1337的最大公约数为191,故填:.【点睛】本题考查利用辗转相除法求两个正整数的最大公因数,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)4.【解析】

(1)设等差数列的公差为d,根据等差数列的通项公式,列出方程组,即可求解.(2)由(1),求得,再根据,,成等比数列,得到关于的方程,即可求解.【详解】(1)设等差数列的公差为d,由题意可得:,解得.所以数列的通项公式为.(2)由知,因为,,成等比数列,所以,即,解得.【点睛】本题主要考查了等差数列的通项公式,以及前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公式,列出方程准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1);(2).【解析】

(1)由成等差数列,且公差为,可得,利用余弦定理可构造关于的方程,解方程求得结果;(2)设,利用外接圆面积为,求得外接圆的半径.根据正弦定理,利用表示出三边,将周长表示为关于的函数,利用三角函数的值域求解方法求得最大值.【详解】(1)依次成等差数列,且公差为,,由余弦定理得:整理得:,解得:或又,则(2)设,外接圆的半径为,则,解得:由正弦定理可得:可得:,,的周长又当,即:时,取得最大值【点睛】本题考查了正弦定理、余弦定理解三角形、三角形周长最值的求解.求解周长的最值的关键是能够将周长构造为关于角的函数,从而利用三角函数的知识来进行求解.考查了推理能力与计算能力,属于中档题.19、(1);(2).【解析】

(1)利用正弦定理化边为角,再依据两角和的正弦公式以及诱导公式,即可求出,进而求得角A的大小:(2)依第一问结果,先由三角形面积公式求出,再利用余弦定理求出,联立即可求解出,的值.【详解】(1)由及正弦定理得,整理得,,,因为,且,所以,,又,所以,.(2)因为的面积,所以,①由余弦定理得,,所以,②联立①②解得,.【点睛】本题主要考查利用正余弦定理解三角形和三角形面积公式的应用,涉及利用两角和的正弦公式、诱导公式对三角函数式的恒等变换.20、(1)见解析(2)存在线段上的中点,使平面,详见解析【解析】

(1)利用条件判断CM与PA、AB垂直,由直线与平面垂直的判定定理可证.(2)取PB的中点Q,PA的中点F,判断四边形CQFD为平行四边形,利用直线与平面平行的判定定理可证;或取PB中点Q,证明平面CQM与平面DAP平行,再利用两平面平行的性质可证.【详解】解:(1)∵,∴是等边三角形,∴,又∵平面,平面,∴,又∵,∴平面;(2)取线段的中点,线段的中点,连结,∴,∵是线段的中点,,∴,∴是平行四边形,∴,又∵平面,平面,∴平面,即存在线段上的中点,使平面.【点睛】本题考查空间直线与平面的平行、垂直判定与性质,考查空间想象能力,逻辑推理能力,属于中档题.21、(1)(2)经过、、、四点的圆所过定点的坐标为、【解析】

(1)先算出直线方程,根据相切和过点,圆心在轴上联立方程解得答案.(2)取线段的中点,经过、、、四点的圆是以线段为直径的圆,设点的坐标为,则点的坐标为,将圆方程表示出来,联立方程组解得答案.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论