版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市二十六中2024届高一数学第二学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=A. B. C.1 D.22.函数的最小正周期为()A. B. C. D.3.在△ABC中,内角A,B,C的对边分别是a,b,c,若,则△ABC是A.正三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形4.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.5.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A. B. C. D.6.数列的首项为,为等差数列,且(),若,,则()A. B. C. D.7.若向量,,则在方向上的投影为()A.-2 B.2 C. D.8.若,且,则()A. B. C. D.9.若直线与平行,则实数的值为()A.或 B. C. D.10.总体由编号为01,02,…,60的60个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第8列和第9列数字开始由左至右选取两个数字,则选出的第5个个体的编号为()5044664429670658036980342718836146422391674325745883110330208353122847736305A.42 B.36 C.22 D.14二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆柱的底面圆的半径为2,高为3,则该圆柱的侧面积为________.12.若等比数列满足,且公比,则_____.13.如图,在正方体中,点是线段上的动点,则直线与平面所成的最大角的余弦值为________.14.已知正三角形的边长是2,点为边上的高所在直线上的任意一点,为射线上一点,且.则的取值范围是____15.已知为直线,为平面,下列四个命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是______.16.对于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,则x的取值范围是________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列是各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)为数列的前n项和,,求数列的前n项和.18.在等差数列{an}中,2a9=a12+13,a3=7,其前n项和为Sn.(1)求数列{an}的通项公式;(2)求数列{}的前n项和Tn,并证明Tn<.19.已知函数()的一段图象如图所示.(1)求函数的解析式;(2)若,求函数的值域.20.已知四棱锥的底面是菱形,底面,是上的任意一点求证:平面平面设,求点到平面的距离在的条件下,若,求与平面所成角的正切值21.某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间,将统计结果分成组:,,,,,绘制成如图所示的频率分布直方图.(1)求直方图中的值;(2)求辆纯电动汽车续驶里程的中位数;(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程为的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
画出不等式组表示的平面区域如图所示:当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以,解得,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.2、D【解析】,函数的最小正周期为,选.【点睛】求三角函数的最小正周期,首先要利用三角公式进行恒等变形,化简函数解析式,把函数解析式化为的形式,然后利用周期公式求出最小正周期,另外还要注意函数的定义域.3、A【解析】
由正弦定理,记,则,,,又,所以,即,所以.故选:A.4、D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.5、B【解析】试题分析:因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为,故选B.【考点】几何概型【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.6、B【解析】由题意可设等差数列的首项为,公差为,所以所以,所以,即=2n-8,=,所以,选B.7、A【解析】向量,,所以,||=5,所以在方向上的投影为=-2故选A8、A【解析】
利用二倍角的正弦公式和与余弦公式化简可得.【详解】∵,∴,∵,所以,∴,∴.故选:A【点睛】本题考查了二倍角的正弦公式,考查了二倍角的余弦公式,属于基础题.9、B【解析】
利用直线与直线平行的性质求解.【详解】∵直线与平行,解得a=2或a=﹣2.∵当a=﹣2时,两直线重合,∴a=2.故选B.【点睛】本题考查满足条件的实数值的求法,是基础题,解题时要注意两直线的位置关系的合理运用.10、C【解析】
通过随机数表的相关运算即可得到答案.【详解】随机数表第1行的第8列和第9列数字为42,由左至右选取两个数字依次为42,36,03,14,22,选出的第5个个体的编号为22,故选C.【点睛】本题主要考查随机数法,按照规则进行即可,难度较小.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
圆柱的侧面打开是一个矩形,长为底面的周长,宽为圆柱的高,即,带入数据即可.【详解】因为圆柱的底面圆的半径为2,所以圆柱的底面圆的周长为,则该圆柱的侧面积为.【点睛】此题考察圆柱侧面积公式,属于基础题目.12、.【解析】
利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.13、【解析】
作的中心,可知平面,所以直线与平面所成角为,当在中点时,最大,求出即可。【详解】设正方体的边长为1,连接,由于为正方体,所以为正四面体,棱长为,为等边三角形,作的中心,连接,,由于为正四面体,为的中心,所以平面,所以为直线与平面所成角,则当在中点时,最大,当在中点时,由于为正四面体,棱长为,等边三角形,为的中心,所以,,所以直线与平面所成的最大角的余弦值为故直线与平面所成的最大角的余弦值为故答案为【点睛】本题考查线面所成角,解题的关键是确定当在中点时,最大,考查学生的空间想象能力以及计算能力。14、【解析】
以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,求出A.C,P,Q的坐标,运用平面向量的坐标表示和性质,求出的表达式,利用判别式法求出的取值范围.【详解】以AB所在的直线为x轴,以AB的中点为坐标原点,AB的垂线为y轴,建立平面直角坐标系,如下图所示:,设,,设,可得,由,可得即,,令,可得,当时,成立,当时,,即,,即,所以的取值范围是.【点睛】本题考查了平面向量数量积的性质和运算,考查了平面向量模的取值范围,构造函数,利用判别式法求函数的最值是解题的关键.15、③④【解析】
①和②均可以找到不符合题意的位置关系,则①和②错误;根据线面垂直性质定理和空间中的平行垂直关系可知③和④正确.【详解】若,此时或,①错误;若,此时或异面,②错误;由线面垂直的性质定理可知,若,则,③正确;两条平行线中的一条垂直于一个平面,则另一条直线必垂直于该平面,可知④正确本题正确结果:③④【点睛】本题考查空间中的平行与垂直关系相关命题的判断,考查学生对于平行与垂直的判定和性质的掌握情况.16、(-∞,-1)∪(3,+∞)【解析】不等式可化为m(x-1)+x2-4x+3>0在0≤m≤4时恒成立.令f(m)=m(x-1)+x2-4x+3.则⇒⇒即x<-1或x>3.故答案为(-∞,-1)∪(3,+∞)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),n∈N+;(2)【解析】
(1)设公比为q,q>0,运用等比数列的通项公式,解方程即可得到所求;(2),再由数列的裂项相消求和,计算可得所求和.【详解】(1)数列是各项均为正数的等比数列,设公比为q,q>0,,.即,,解得,可得,n∈N+;(2),前n项和,由(1)可得a1=2,,即有.【点睛】本题考查数列的通项和求和,数列求和的常用方法有:分组求和,错位相减求和,倒序相加求和等,本题解题关键是裂项的形式,本题属于中等题.18、(1)(2)见解析【解析】
(1)等差数列{an}的公差设为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,求得(),再由数列的裂项相消求和可得Tn,再由不等式的性质即可得证.【详解】(1)等差数列{an}的公差设为d,2a9=a12+13,a3=7,可得2(a1+8d)=a1+11d+13,a1+2d=7,解得a1=3,d=2,则an=3+2(n﹣1)=2n+1;(2)Snn(3+2n+1)=n(n+2),(),前n项和Tn(1)(1)().【点睛】本题考查等差数列的通项公式和求和公式的运用,以及数列的裂项相消求和,考查方程思想和运算能力,属于中档题.19、(1);(2)【解析】
(1)由函数的一段图象求得、、和的值即可;(2)由,求得的取值范围,再利用正弦函数的性质求得的最大和最小值即可.【详解】解:(1)由函数的一段图象知,,,,解得,又时,,,,解得,;,函数的解析式为;(2)当时,,令,解得,此时取得最大值为2;令,解得,此时取得最小值为;函数的值域为.【点睛】本题考查了函数的图象和性质的应用问题,属于基础题.20、(1)见解析(2)(3)【解析】
(1)由平面,得出,由菱形的性质得出,利用直线与平面垂直的判定定理得出平面,再利用平面与平面垂直的判定定理可证出结论;(2)先计算出三棱锥的体积,并计算出的面积,利用等体积法计算出三棱锥的高,即为点到平面的距离;(3)由(1)平面,于此得知为直线与平面所成的角,由,得出平面,于此计算出,然后在中计算出即可.【详解】(1)平面,平面,,四边形是菱形,,平面;又平面,所以平面平面.(2)设,连结,则,四边形是菱形,,,,设点到平面的距离为平面,,,解得,即点到平面的距离为;(3)由(1)得平面,为与平面所成角,平面,,与平面所成角的正切值为.【点睛】本题考查平面与平面垂直的证明、点到平面的距离以及直线与平面所成的角,求解点到平面的距离,常用的方法是等体积法,将问题转化为三棱锥的高来计算,考查空间想象能力与推理能力,属于中等题.21、(1)(2)(3)【解析】
(1)利用小矩形的面积和为,求得值,即可求得答案;(2)中位数的计算方法为:把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,即可求得答案;(3)据直方图求出续驶里程在和续驶里程在的车辆数,利用排列组合和概率公式求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025公路施工劳务承包合同
- 2025企业管理资料员工诉企业“乘人之危”签订修改劳动合同怎么办文档范本
- 2025合同模板合作办幼儿园合同范本
- 2025国际销售代表合同
- 胎儿保护科学指导下的孕妇药物选择
- 结合现代科技的自然体验课程设计探讨
- 2024年拉米夫定项目资金需求报告代可行性研究报告
- 2024年O型圈项目投资申请报告代可行性研究报告
- 生态农业科技发展现状与前景展望
- 二零二五年度新能源发电项目电气设备安装调试合同4篇
- 2024-2025学年山东省潍坊市高一上册1月期末考试数学检测试题(附解析)
- 江苏省扬州市蒋王小学2023~2024年五年级上学期英语期末试卷(含答案无听力原文无音频)
- 数学-湖南省新高考教学教研联盟(长郡二十校联盟)2024-2025学年2025届高三上学期第一次预热演练试题和答案
- 决胜中层:中层管理者的九项修炼-记录
- 幼儿园人民币启蒙教育方案
- 军事理论(2024年版)学习通超星期末考试答案章节答案2024年
- 记录片21世纪禁爱指南
- 腰椎间盘的诊断证明书
- 移动商务内容运营(吴洪贵)任务七 裂变传播
- 单级倒立摆系统建模与控制器设计
- 龋病的治疗 深龋的治疗
评论
0/150
提交评论