河北省衡水市桃城区武邑中学2024年高一下数学期末考试模拟试题含解析_第1页
河北省衡水市桃城区武邑中学2024年高一下数学期末考试模拟试题含解析_第2页
河北省衡水市桃城区武邑中学2024年高一下数学期末考试模拟试题含解析_第3页
河北省衡水市桃城区武邑中学2024年高一下数学期末考试模拟试题含解析_第4页
河北省衡水市桃城区武邑中学2024年高一下数学期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省衡水市桃城区武邑中学2024年高一下数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.2.已知直线与直线平行,则实数k的值为()A.-2 B.2 C. D.3.化简结果为()A. B. C. D.4.已知数列的前项和为,若,则()A. B. C. D.5.某型号汽车使用年限与年维修费(单位:万元)的统计数据如下表,由最小二乘法求得回归方程.现发现表中有一个数据看不清,推测该数据的值为()使用年限维修费A. B.C. D.6.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.7.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,8.已知实数满足且,则下列关系中一定正确的是()A. B. C. D.9.若函数有零点,则实数的取值范围为()A. B. C. D.10.2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除:(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用…等,其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新的个税政策的税率表部分内容如下:级数一级二级三级…每月应纳税所得额元(含税)…税率(%)31020…现有李某月收入为19000元,膝下有一名子女,需赡养老人(除此之外无其它专项附加扣除),则他该月应交纳的个税金额为()A.570 B.890 C.1100 D.1900二、填空题:本大题共6小题,每小题5分,共30分。11.某货船在处看灯塔在北偏东方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达处,看到灯塔在北偏东方向,此时货船到灯塔的距离为______海里.12.若是等差数列,首项,,,则使前项和最大的自然数是________.13.已知是以为首项,为公差的等差数列,是其前项和,则数列的最小项为第___项14.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:宽带租户业主已安装未安装则该小区已安装宽带的居民估计有______户.15.某单位为了了解用电量度与气温之间的关系,随机统计了某天的用电量与当天气温.气温(℃)141286用电量(度)22263438由表中数据得回归直线方程中,据此预测当气温为5℃时,用电量的度数约为____.16.和的等差中项为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)求的解析式;(2)求的单调增区间并求出取得最小值时所对应的x取值集合.18.各项均不相等的等差数列前项和为,已知,且成等比数列.(1)求数列的通项公式;(2)令,求数列的前项和.19.已知.(1)设,求满足的实数的值;(2)若为上的奇函数,试求函数的反函数.20.为了了解高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.(1)求第二小组的频率;(2)求样本容量;(3)若次数在110以上为达标,试估计全体高一学生的达标率为多少?21.如图.在四棱锥中,,,平面ABCD,且.,,M、N分别为棱PC,PB的中点.(1)证明:A,D,M,N四点共面,且平面ADMN;(2)求直线BD与平面ADMN所成角的正弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。2、A【解析】

由两直线平行的可得:,运算即可得解.【详解】解:由两直线平行的判定可得:,解得,故选:A.【点睛】本题考查利用两直线平行求参数,属基础题.3、A【解析】

根据指数幂运算法则进行化简即可.【详解】本题正确选项:【点睛】本题考查指数幂的运算,属于基础题.4、A【解析】

再递推一步,两个等式相减,得到一个等式,进行合理变形,可以得到一个等比数列,求出通项公式,最后求出数列的通项公式,最后求出,选出答案即可.【详解】因为,所以当时,,两式相减化简得:,而,所以数列是以为首项,为公比的等比数列,因此有,所以,故本题选A.【点睛】本题考查了已知数列递推公式求数列通项公式的问题,考查了等比数列的判断以及通项公式,正确的递推和等式的合理变形是解题的关键.5、C【解析】

设所求数据为,计算出和,然后将点代入回归直线方程可求出的值.【详解】设所求数据为,则,,由于回归直线过样本的中心点,则有,解得,故选:C.【点睛】本题考查利用回归直线计算原始数据,解题时要充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.6、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.7、D【解析】

首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.8、D【解析】

由已知得,然后根据不等式的性质判断.【详解】由且,,由得,A错;由得,B错;由于可能为0,C错;由已知得,则,D正确.故选:D.【点睛】本题考查不等式的性质,掌握不等式性质是解题关键,特别是性质:不等式两同乘以一个正数,不等号方向不变,不等式两边同乘以一个负数,不等号方向改变.9、D【解析】

令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【点睛】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.10、B【解析】

根据题意,分段计算李某的个人所得税额,即可求解,得到答案.【详解】由题意,李某月应纳税所得额(含税)为元,不超过3000的部分的税额为元,超过3000元至12000元的部分税额为元,所以李某月应缴纳的个税金额为元.故选:B.【点睛】本题主要考查了分段函数的实际应用与函数值的计算问题,其中解答中认真审题,合理利用分段函数进行求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意利用方位角的定义画出示意图,再利用三角形,解出的长度.【详解】解:由题意画出图形为:因为,,所以,又由于某船以每小时18海里的速度向正北方向航行,经过40分钟航行到,所以(海里).在中,利用正弦定理得:,所以;故答案为:.【点睛】此题考查了学生对于题意的正确理解,还考查了利用正弦定理求解三角形及学生的计算能力,属于基础题.12、【解析】

由已知条件推导出,,由此能求出使前项和成立的最大自然数的值.【详解】解:等差数列,首项,,,,.如若不然,,则,而,得,矛盾,故不可能.使前项和成立的最大自然数为.故答案为:.【点睛】本题考查等差数列的前项和取最大值时的值的求法,是中档题,解题时要认真审题,注意等差数列的通项公式的合理运用.13、【解析】

先求,利用二次函数性质求最值即可【详解】由题当时最小故答案为8【点睛】本题考查等差数列的求和公式,考查二次函数求最值,是基础题14、【解析】

计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.15、1【解析】

由表格得,即样本中心点的坐标为,又因为样本中心点在回归方程上且,解得:,当时,,故答案为1.考点:回归方程【名师点睛】本题考查线性回归方程,属容易题.两个变量之间的关系,除了函数关系,还存在相关关系,通过建立回归直线方程,就可以根据其部分观测值,获得对这两个变量之间整体关系的了解.解题时根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的的值,代入线性回归方程,预报要销售的件数.16、【解析】

设和的等差中项为,利用等差中项公式可得出的值.【详解】设和的等差中项为,由等差中项公式可得,故答案为:.【点睛】本题考查等差中项的求解,解题时要充分利用等差中项公式来求解,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)单调增区间为,();x取值集合,()【解析】

(1)先由函数的最大值求出的值,再由图中对称轴与相邻对称中心之间的距离得出最小正周期,于此得出,再将点代入函数的解析式结合的范围得出的值,于此可得出函数的解析式;(2)解不等式可得出函数的单调递增区间,由可求出函数取最小值时的取值集合.【详解】(1)由图象可知,.因为,所以.所以.解得.又因为函数的图象经过点,所以,解得.又因为,所以,所以.(2),,解得,,的单调增区间为,(),的最小值为-2,取得最小值时x取值集合,().【点睛】本题考查由三角函数图象求解析式,以及三角函数的基本性质问题,在利用图象求三角函数的解析式时,其基本步骤如下:(1)求、:,;(2)求:;(3)求:将顶点或对称中心点代入函数解析式求,但是在代对称中心点时需要结合函数在所找对称中心点附近的单调性来考查.18、(1);(2)【解析】

(1)利用等差数列的通项公式和等比数列的性质,可得,则可得通项公式.(2)根据(1)的结论可得,然后利用裂项相消求和,可得结果.【详解】(1)因为各项均不相等,所以公差由等差数列通项公式且,所以,又成等比数列,所以,则,化简得,所以即可得即(2)由(1)可得化简可得由所以【点睛】本题主要考查利用裂项相消法求和,属基础题.19、(1);(2).【解析】

(1)把代入函数解析式,代入方程即可求解.(2)由函数奇偶性得,然后求得的解析式,分段求解反函数即可.【详解】(1)当时,,由,得,即,解得.(2)为上的奇函数,,则.,由,,得,;由,,得,.函数的反函数为.【点睛】本题主要考查了函数的解析式及求法,考查了反函数的求法,属于中档题.20、(1);(2);(3)%【解析】

(1)由于每个长方形的面积即为本组的频率,设第二小组的频率为4,则解得第二小组的频率为(2)设样本容量为,则(3)由(1)和直方图可知,次数在110以上的频率为由此估计全体高一学生的达标率为%21、(1)证明见解析;(2)【解析】

(1)先证,再证,即可得证;要证平面ADMN,可通过求证PB垂直于ADMN中的两条交线来证明(2)求直线BD与平面ADMN所成角,需要找出BD在平面ADMN的射影,可通过三垂线定理去进行证明【详解】解:(1)证明因为M,N分别为PC,PB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论