山东省莱山第一中学2025届高一下数学期末质量检测试题含解析_第1页
山东省莱山第一中学2025届高一下数学期末质量检测试题含解析_第2页
山东省莱山第一中学2025届高一下数学期末质量检测试题含解析_第3页
山东省莱山第一中学2025届高一下数学期末质量检测试题含解析_第4页
山东省莱山第一中学2025届高一下数学期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省莱山第一中学2025届高一下数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的首项,公差,则()A.5 B.7 C.9 D.112.名小学生的身高(单位:cm)分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115,121,119.两组数据中相等的数字特征是()A.中位数、极差 B.平均数、方差C.方差、极差 D.极差、平均数3.已知函数,如果不等式的解集为,那么不等式的解集为()A. B.C. D.4.甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球,2个白球,乙袋中有2个红球,3个白球,现从两袋中各随机取一球,则两球不同颜色的概率为()A. B. C. D.5.已知,且,则实数的值为()A.2 B. C.3 D.6.已知,函数,存在常数,使得为偶函数,则可能的值为()A. B. C. D.7.在中,,设向量与的夹角为,若,则的取值范围是()A. B. C. D.8.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为()A. B. C. D.9.某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件4的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如下表:752029714985034437863694141469037623804601366959742761428261根据以上方法及数据,估计事件A的概率为()A.0.384 B.0.65 C.0.9 D.0.90410.与直线平行,且到的距离为的直线方程为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线过点,,则直线的倾斜角为______.12.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.13.已知,向量的夹角为,则的最大值为_____.14.已知数列是等差数列,若,,则________.15.若存在实数,使不等式成立,则的取值范围是_______________.16.已知,是第三象限角,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司为了提高工效,需分析该公司的产量台与所用时间小时之间的关系,为此做了四次统计,所得数据如下:产品台数台2345所用时间小时34求出y关于x的线性回归方程;预测生产10台产品需要多少小时?18.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.19.某工厂新研发了一种产品,该产品每件成本为5元,将该产品按事先拟定的价格进行销售,得到如下数据:单价(元)88.28.48.68.89销量(件)908483807568(1)求销量(件)关于单价(元)的线性回归方程;(2)若单价定为10元,估计销量为多少件;(3)根据销量关于单价的线性回归方程,要使利润最大,应将价格定为多少?参考公式:,.参考数据:,20.如图,在平面直角坐标系中,已知圆:,点,过点的直线与圆交于不同的两点(不在y轴上).(1)若直线的斜率为3,求的长度;(2)设直线的斜率分别为,求证:为定值,并求出该定值;(3)设的中点为,是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.21.已知等差数列满足,的前项和为.(1)求及;(2)记,求

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

直接利用等差数列的通项公式,即可得到本题答案.【详解】由为等差数列,且首项,公差,得.故选:C【点睛】本题主要考查利用等差数列的通项公式求值,属基础题.2、C【解析】

将甲、乙两组数据的极差、平均数、中位数、方差全部算出来,并进行比较,可得出答案.【详解】甲组数据由小到大排列依次为:、、、、,极差为,平均数为中位数为,方差为,乙组数据由小到大排列依次为:、、、、,极差为,平均数为中位数为,方差为,因此,两组数据相等的是极差和方差,故选C.【点睛】本题考查样本的数字特征,理解极差、平均数、中位数、方差的定义并利用相关公式进行计算是解本题的关键,考查计算能力,属于基础题.3、A【解析】

一元二次不等式大于零解集是,先判断二次项系数为负,再根据根与系数关系,可求出a,b的值,代入解析式,求解不等式.【详解】由的解集是,则故有,即.由解得或故不等式的解集是,故选:A.【点睛】对于含参数的一元二次不等式需要先判断二次项系数的正负,再进一步求解参数.4、D【解析】

现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,由此能求出两球不同颜色的概率.【详解】甲、乙两个不透明的袋中各有5个仅颜色不同的球,其中甲袋中有3个红球、2个白球,乙袋中有2个红球、3个白球,现从两袋中各随机取一球,基本事件总数,两球不同颜色包含的基本事件个数,则两球不同颜色的概率为.故选.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于中档题.5、D【解析】

根据二角和与差的正弦公式化简,,再切化弦,即可求解.【详解】由题意又解得故选:【点睛】本题考查两角和与差的正弦公式,属于基础题.6、C【解析】

直接利用三角函数性质的应用和函数的奇偶性的应用求出结果.【详解】解:由函数,存在常数,使得为偶函数,则,由于函数为偶函数,故,所以,当时,.故选:C.【点睛】本题考查三角函数的性质的应用,属于基础题.7、A【解析】

根据向量与的夹角的余弦值,得到,然后利用正弦定理,表示出,根据的范围,得到的范围.【详解】因为向量与的夹角为,且,所以,在中,由正弦定理,得,所以,因为,所以,所以.故选:A.【点睛】本题考查向量的夹角,正弦定理解三角形,求正弦函数的值域,属于简单题.8、A【解析】

直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选.【点睛】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.9、C【解析】

由随机模拟实验结合图表计算即可得解.【详解】由随机模拟实验可得:“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中最多成功1次”共141,601两组随机数,则“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”共组随机数,即事件的概率为,故选.【点睛】本题考查了随机模拟实验及识图能力,属于中档题.10、B【解析】试题分析:与直线平行的直线设为与的距离为考点:两直线间的距离点评:两平行直线间的距离二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【详解】依题意,故直线的倾斜角为.【点睛】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.12、【解析】

先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.13、【解析】

将两边平方,化简后利用基本不等式求得的最大值.【详解】将两边平方并化简得,由基本不等式得,故,即,即,所以的最大值为.【点睛】本小题主要考查平面向量模的运算,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.14、【解析】

求出公差,利用通项公式即可求解.【详解】设公差为,则所以故答案为:【点睛】本题主要考查了等差数列基本量的计算,属于基础题.15、;【解析】

不等式转化为,由于存在,使不等式成立,因此只要求得的最小值即可.【详解】由题意存在,使得不等式成立,当时,,其最小值为,∴.故答案为.【点睛】本题考查不等式能成立问题,解题关键是把问题转化为求函数的最值.不等式能成立与不等式恒成立问题的转化区别:在定义域上,不等式恒成立,则,不等式能成立,则,不等式恒成立,则,不等式能成立,则.转化时要注意是求最大值还是求最小值.16、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)小时【解析】

求出出横标和纵标的平均数,得到样本中心点,求出对应的横标和纵标的积的和,求出横标的平方和,做出系数和的值,写出线性回归方程.将代入回归直线方程,可得结论.【详解】解:由题意,,,于是回归方程;由题意,时,答:根据回归方程,加工能力10个零件,大约需要小时.【点睛】本题考查线性回归方程的求法和应用,考查学生的计算能力,属于中档题.18、(1)an=3n–4,(3)Sn=n3–8n,最小值为–1.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(3)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an}的公差为d,由题意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通项公式为an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以当n=4时,Sn取得最小值,最小值为–1.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.19、(1)(2)当销售单价定为10元时,销量为50件(3)要使利润达到最大,应将价格定位8.75元.【解析】

(1)由均值公式求得均值,,再根据给定公式计算回归系数,得回归方程;(2)在(1)的回归方程中令,求得值即可;(3)由利润可化为的二次函数,由二次函数知识可得利润最大值及此时的值.【详解】(1)由题意可得,,则,从而,故所求回归直线方程为.(2)当时,,故当销售单价定为10元时,销量为50件.(3)由题意可得,,.故要使利润达到最大,应将价格定位8.75元.【点睛】本题考查线性回归直线方程,解题时只要根据已知公式计算,计算能力是正确解答本题的基础.20、(1);(2)见解析;(3)见解析【解析】

(1)求出圆心O到直线的距离,已知半径通过勾股定理即可算出弦长的一半,即可算出弦长。(2)设,直线的方程为,联立圆的方程通过韦达定理化简即可。(3)设点,根据,得,表示出,的关系,再联立直线和圆的方程得到,与k的关系,代入可解出k,最后再通过有两个交点判断即可求出k值。【详解】(1)由直线的斜率为3,可得直线的方程为所以圆心到直线的距离为所以(2)直线的方程为,代入圆可得方程设,则所以为定值,定值为0(3)设点,由,可得:,即,化得:由(*)及直线的方程可得:,代入上式可得:,可化为:求得:又由(*)解得:所以不符合题意,所以不存在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论