版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省张掖市二中2023-2024学年高一数学第二学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,若则,的值是()A., B.,C., D.,2.如图,,下列等式中成立的是()A. B.C. D.3.关于的方程在内有相异两实根,则实数的取值范围为()A. B. C. D.4.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.5.函数图象的一个对称中心和一条对称轴可以是()A., B.,C., D.,6.如图,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为()A. B. C. D.7.过点作抛物线的两条切线,切点为,则的面积为()A. B. C. D.8.下列不等式中正确的是()A.若,,则B.若,则C.若,则D.若,则9.同时抛掷两个骰子,则向上的点数之和是的概率是()A. B. C. D.10.不等式的解集是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数为____________.12.已知函数,若函数恰有个零点,则实数的取值范围为__________.13.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.14.如图,正方体的棱长为,动点在对角线上,过点作垂直于的平面,记这样得到的截面多边形(含三角形)的周长为,设,则当时,函数的值域__________.15.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为__.16.等差数列中,,则其前12项之和的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知四棱锥中,平面,,,,是线段的中点.(1)求证:平面;(2)试在线段上确定一点,使得平面,并加以证明.18.求下列方程和不等式的解集(1)(2)19.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.20.设向量,,.(1)若,求实数的值;(2)求在方向上的投影.21.的内角的对边分别为,且.(1)求;(2)若,点在边上,,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由向量相等的充要条件可得:,列出方程组,即可求解,得到答案.【详解】由题意,向量,,,又因为,所以,所以,解得,故选B.【点睛】本题主要考查了平面向量的数乘运算及向量相等的充要条件,其中解答中熟记向量的共线条件,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】
本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案.【详解】因为,所以,所以,即,故选B.【点睛】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题.3、C【解析】
将问题转化为与有两个不同的交点;根据可得,对照的图象可构造出不等式求得结果.【详解】方程有两个相异实根等价于与有两个不同的交点当时,由图象可知:,解得:本题正确选项:【点睛】本题考查正弦型函数的图象应用,主要是根据方程根的个数确定参数范围,关键是能够将问题转化为交点个数问题,利用数形结合来进行求解.4、B【解析】
模拟执行循环体的过程,即可得到结果.【详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【点睛】本题考查程序框图中循环体的执行,属基础题.5、B【解析】
直接利用余弦型函数的性质求出函数的对称轴和对称中心,即可得到答案.【详解】由题意,函数的性质,令,解得,当时,,即函数的一条对称轴的方程为,令,解得,当时,,即函数的一个对称中心为,故选B.【点睛】本题主要考查了余弦型函数的性质对称轴和对称中心的应用,着重考查学生的运算能力和转换能力,属于基础题型.6、B【解析】,,.选B.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.7、B【解析】设抛物线过点的切线方程为,即,将点代入可得,同理都满足方程,即为直线的方程为,与抛物线联立,可得,点到直线的距离,则的面积为,故选B.【方法点晴】本题主要考查利用导数求曲线切线方程以及弦长公式与点到直线距离公式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.8、D【解析】
根据不等式的性质逐一判断即可得解.【详解】解:对于选项A,若,,不妨取,则,即A错误;对于选项B,若,当时,则,即B错误;对于选项C,若,不妨取,则,即C错误;对于选项D,若,则,即,,即D正确,故选:D.【点睛】本题考查了不等式的性质,属基础题.9、C【解析】
由题意可知,基本事件总数为,然后列举出事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率.【详解】同时抛掷两个骰子,共有个基本事件,事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件有:、、、、,共个基本事件.因此,所求事件的概率为.故选:C.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.10、A【解析】
分解因式,即可求得.【详解】进行分解因式可得:,故不等式解集为:故选:A.【点睛】本题考查一元二次不等式的求解,属基础知识题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.12、【解析】
首先根据题意转化为函数与有个交点,再画出与的图象,根据图象即可得到的取值范围.【详解】有题知:函数恰有个零点,等价于函数与有个交点.当函数与相切时,即:,,,解得或(舍去).所以根据图象可知:.故答案为:【点睛】本题主要考查函数的零点问题,同时考查了学生的转化能力,体现了数形结合的思想,属于中档题.13、【解析】
如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.14、【解析】
根据已知条件,所得截面可能是三角形,也可能是六边形,分别求出三角形与六边形周长的取值情况,即可得到函数的值域.【详解】如图:∵正方体的棱长为,∴正方体的对角线长为6,∵(i)当或时,三角形的周长最小.设截面正三角形的边长为,由等体积法得:∴∴,(ii)或时,三角形的周长最大,截面正三角形的边长为,∴(iii)当时,截面六边形的周长都为∴∴当时,函数的值域为.【点睛】本题考查多面体表面的截面问题和线面垂直,关键在于结合图形分析截面的三种情况,进而得出与截面边长的关系.15、6【解析】
如图所示,取PB的中点O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O为外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半径R=∴V球=43πR3=4π3×(62)3=6点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.16、【解析】
利用等差数列的通项公式、前n项和公式直接求解.【详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【点睛】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)存在线段上的中点,使平面,详见解析【解析】
(1)利用条件判断CM与PA、AB垂直,由直线与平面垂直的判定定理可证.(2)取PB的中点Q,PA的中点F,判断四边形CQFD为平行四边形,利用直线与平面平行的判定定理可证;或取PB中点Q,证明平面CQM与平面DAP平行,再利用两平面平行的性质可证.【详解】解:(1)∵,∴是等边三角形,∴,又∵平面,平面,∴,又∵,∴平面;(2)取线段的中点,线段的中点,连结,∴,∵是线段的中点,,∴,∴是平行四边形,∴,又∵平面,平面,∴平面,即存在线段上的中点,使平面.【点睛】本题考查空间直线与平面的平行、垂直判定与性质,考查空间想象能力,逻辑推理能力,属于中档题.18、(1)或;(2).【解析】
(1)先将方程变形得到,根据,得到,进而可求出结果;(2)由题意得到,求解即可得出结果.【详解】(1)由得,因为,所以,因此或;即原方程的解集为:或;(2)由得,即,解得:.故,原不等式的解集为:.【点睛】本题主要考查解含三角函数的方程,以及反三角函数不等式,熟记三角函数性质,根据函数单调性即可求解,属于常考题型.19、(1)12;(2)过定点,理由见解析【解析】
(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得,,所以,令,即可得到本题答案.【详解】(1)由题意可得圆心到直线的距离为,从而,则过点的切线长.故四边形的面积为,即四边形面积的最小值为12.(2)因为,所以直线与直线的斜率都存在,且不为0.设直线的方程为,则直线的方程为.联立方程,消去,整理得解得或,则.同理可得.所以.令,得,解得.取,可以证得,所以直线过定点.当时,轴,易知与均为正三角形,直线的方程为,也过定点.综上,直线过定点.【点睛】本题主要考查与椭圆相关的四边形面积的范围问题以及与椭圆有关的直线过定点问题,联立直线方程与椭圆方程,利用韦达定理是解决此类问题的常用方法.20、(1);(2).【解析】
(1)计算出的坐标,然后利用共线向量的坐标表示列出等式求出实数的值;(2)求出和,从而可得出在方向上的投影为.【详解】(1),,,,,,解得;(2),,在方向上的投影.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标运算以及投影的计算,在解题时要弄清楚这些知识点的定义以及坐标运算律,考查计算能力,属于中等题.21、(1);(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度融资租赁合同:飞机租赁项目协议
- 2024年度知识产权许可合同:专利权人授权乙方向第三方销售专利产品的许可协议2篇
- 2024版股权投资合同(带具体标的)
- 2024年度价格条款:沙子供货合同价格条款协议3篇
- 2024年度版权许可使用合同文学作品
- 2024年度食品加工生产销售合同协议书2篇
- 2024年度版权许可及技术支持合同(软件应用)
- 二零二四年度企业级信息系统升级改造合同2篇
- 商铺转让合同
- 2024年度船舶物料供应合同2篇
- 2024年浙江省初中学业水平考试数学试题(潮汐卷)(解析版)
- 中职教育一年级上学期英语《We Are Friends》课件
- 专题10 议论文阅读(含答案) 2024年中考语文【热点-重点-难点】专练(上海专用)
- 21 小圣施威降大圣 公开课一等奖创新教案
- 新概念第四册课文翻译及学习笔记:Lesson5
- 业绩对赌协议范文(2024版)
- 宠物医院服务行业市场调研分析报告
- 中国金属门窗行业分类、市场运行态势及产业链全景图谱分析
- 环境治理与利益相关者参与
- 《第6单元 除数是两位数的除法:商是两位数的除法》课件
- JT∕T 795-2023 事故汽车修复技术规范
评论
0/150
提交评论