![甘肃省天水市第二中学2023-2024学年高一下数学期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view12/M00/0D/09/wKhkGWZmiP2AMbuvAAJitJI60T0016.jpg)
![甘肃省天水市第二中学2023-2024学年高一下数学期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view12/M00/0D/09/wKhkGWZmiP2AMbuvAAJitJI60T00162.jpg)
![甘肃省天水市第二中学2023-2024学年高一下数学期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view12/M00/0D/09/wKhkGWZmiP2AMbuvAAJitJI60T00163.jpg)
![甘肃省天水市第二中学2023-2024学年高一下数学期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view12/M00/0D/09/wKhkGWZmiP2AMbuvAAJitJI60T00164.jpg)
![甘肃省天水市第二中学2023-2024学年高一下数学期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view12/M00/0D/09/wKhkGWZmiP2AMbuvAAJitJI60T00165.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水市第二中学2023-2024学年高一下数学期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A. B. C. D.2.已知直线与圆交于M,N两点,若,则k的值为()A. B. C. D.3.将函数的图象向左平移个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,若对任意的均有成立,则的最小值为()A. B. C. D.4.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,5.设不等式组所表示的平面区域为,在内任取一点,的概率是()A. B. C. D.6.利用随机模拟方法可估计无理数π的数值,为此设计右图所示的程序框图,其中rand()表示产生区间(0,1)上的随机数,P是s与n的比值,执行此程序框图,输出结果P的值趋近于()A.π B.π4 C.π27.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.08.数列{an}满足a1=1,an+1=2an+1(n∈N+),那么a4的值为().A.4 B.8 C.15 D.319.阅读如图的程序框图,运行该程序,则输出的值为()A.3 B.1C.-1 D.010.在△ABC中,,,.的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,若,则_______12.已知,,则________(用反三角函数表示)13.已知、、分别是的边、、的中点,为的外心,且,给出下列等式:①;②;③;④其中正确的等式是_________(填写所有正确等式的编号).14.设Sn为数列{an}的前n项和,若Sn=(-1)nan-,n∈N,则a3=________.15.已知数列中,,,设,若对任意的正整数,当时,不等式恒成立,则实数的取值范围是______.16.设常数,函数,若的反函数的图像经过点,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.18.如图,在四棱锥中,平面,底面是棱长为的菱形,,,是的中点.(1)求证://平面;(2)求直线与平面所成角的正切值.19.设集合,其中.(1)写出集合中的所有元素;(2)设,证明“”的充要条件是“”(3)设集合,设,使得,且,试判断“”是“”的什么条件并说明理由.20.已知(1)求的值;(2)求的最小值以及取得最小值时的值21.已知袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.若从袋子中随机抽取1个小球,取到标号为2的小球的概率是.(1)求n的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记“”为事件A,求事件A的概率;②在区间内任取2个实数,求事件“恒成立”的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
记事件,基本事件是线段的长度,如下图所示,作于,作于,根据三角形的面积关系得,再由三角形的相似性得,可得事件的几何度量为线段的长度,可求得其概率.【详解】记事件,基本事件是线段的长度,如下图所示,作于,作于,因为,则有;化简得:,因为,则由三角形的相似性得,所以,事件的几何度量为线段的长度,因为,所以的面积大于的概率.故选:C【点睛】本题考查几何概型,属于基础题.常有以下一些方面需考虑几何概型,求解时需注意一些要点.(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用"比例解法求解几何概型的概率.2、C【解析】
先求得圆心到直线的距离,再根据圆的弦长公式求解.【详解】圆心到直线的距离为:由圆的弦长公式:得解得故选:C【点睛】本题主要考查了直线与圆的位置关系,还考查了运算求解的能力,属于基础题.3、D【解析】
直接应用正弦函数的平移变换和伸缩变换的规律性质,求出函数的解析式,对任意的均有,说明函数在时,取得最大值,得出的表达式,结合已知选出正确答案.【详解】因为函数的图象向左平移个单位长度,所以得到函数,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,所以,对任意的均有成立,所以在时,取得最大值,所以有而,所以的最小值为.【点睛】本题考查了正弦型函数的图象变换规律、函数图象的性质,考查了函数最大值的概念,正确求出变换后的函数解析式是解题的关键.4、D【解析】
首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.5、A【解析】作出约束条件所表示的平面区域,如图所示,四边形所示,作出直线,由几何概型的概率计算公式知的概率,故选A.6、B【解析】
根据程序框图可知由几何概型计算出x,y任取(0,1)上的数时落在x2【详解】解:根据程序框图可知P为频率,它趋近于在边长为1的正方形中随机取一点落在扇形内的的概率π×故选:B【点睛】本题考查的知识点是程序框图,根据已知中的程序框图分析出程序的功能,并将问题转化为几何概型问题是解答本题的关键,属于基础题.7、C【解析】
画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.8、C【解析】试题分析:,,,故选C.考点:数列的递推公式9、D【解析】
从起始条件、开始执行程序框图,直到终止循环.【详解】,,,,,输出.【点睛】本题是直到型循环,只要满足判断框中的条件,就终止循环,考查读懂简单的程序框图.10、B【解析】
由正弦定理列方程求解。【详解】由正弦定理可得:,所以,解得:.故选:B【点睛】本题主要考查了正弦定理,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意利用两个向量垂直的性质,两个向量的数量积公式,求得的值.【详解】因为向量,若,∴,则.故答案为:1.【点睛】本题主要考查两个向量垂直的坐标运算,属于基础题.12、【解析】∵,,∴.故答案为13、①②④.【解析】
根据向量的中点性质与向量的加法运算,可判断①②③.【详解】、、分别是的边、、的中点,为的外心,且,设三条中线交点为G,如下图所示:对于①,由三角形中线性质及向量加法运算可知,所以①正确;对于②,,所以②正确;对于③,,所以③错误;对于,由外心性质可知,所以故正确.综上可知,正确的为①②④.故答案为:①②④.【点睛】本题考查了向量的线性运算,三角形外心的性质及应用,属于基础题.14、-【解析】当n=3时,S3=a1+a2+a3=-a3-,则a1+a2+2a3=-,当n=4时,S4=a1+a2+a3+a4=a4-,两式相减得a3=-.15、【解析】∵,(,),当时,,,…,,并项相加,得:,
∴,又∵当时,也满足上式,
∴数列的通项公式为,∴
,令(),则,∵当时,恒成立,∴在上是增函数,
故当时,,即当时,,对任意的正整数,当时,不等式恒成立,则须使,即对恒成立,即的最小值,可得,∴实数的取值范围为,故答案为.点睛:本题考查数列的通项及前项和,涉及利用导数研究函数的单调性,考查运算求解能力,注意解题方法的积累,属于难题通过并项相加可知当时,进而可得数列的通项公式,裂项、并项相加可知,通过求导可知是增函数,进而问题转化为,由恒成立思想,即可得结论.16、1【解析】
反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【详解】依题意知:f(x)=lg(x+a)的图象过(1,2),∴lg(1+a)=2,解得a=1.故答案为:1【点睛】本题考查了反函数,熟记其性质是关键,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理边化角可求得,由的范围可求得结果;(2)利用余弦定理和基本不等式可求得的最大值,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,即又(2)由余弦定理得:(当且仅当时取等号),即面积的最大值为【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角的应用、余弦定理解三角形、基本不等式求积的最大值、三角形面积公式的应用;求解面积的最大值的关键是能够在余弦定理的基础上,利用基本不等式来求解两边之积的最大值.18、(1)见解析(2)【解析】
(1)连接交于点,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理得出平面;(2)取的中点,连接,由中位线的性质得到,且,可得出平面,于此得出直线与平面所成的角为,然后在中计算即可.【详解】(1)连接,交于点,连接,由底面是菱形,知是的中点,又是的中点,∴.又∵平面,平面,∴平面;(2)取中点,连接,∵分别为的中点,∴,∵平面,∴平面,∴直线与平面所成角为,∵,,∴.【点睛】本题考查直线与平面平行的判定,考查直线与平面所成角的计算,在计算直线与平面所成角时,要注意过点作平面的垂线,构造出直线与平面所成的角,再选择合适的直角三角形求解,考查逻辑推理能力与计算能力,属于中等题.19、(1),,,;(2)证明见解析;(3)充要条件.【解析】
(1)根据题意,直接列出即可(2)利用的和的符号和最高次的相同,利用排除法可以证明。(3)利用(2)的结论完成(3)即可。【详解】(1)中的元素有,,,。(2)充分性:当时,显然成立。必要性:若=1,则若=,则若的值有个1,和个。不妨设2的次数最高次为次,其系数为1,则,说明只要最高次的系数是正的,整个式子就是正的,同理,只要最高次的系数是负的,整个式子就是负的,说明最高次的系数只能是0,就是说,即综上“”的充要条件是“”(3)等价于等价于由(2)得“=”的充要条件是“”即“=”是“”的充要条件【点睛】本题考查了数列递推关系等差数列与等比数列的通项公式求和公式,考查了推理能力与计算能力,属于难题.20、(1)(2)当时,函数取得最小值.【解析】
(1)将代入函数计算得到答案.(2)根据降次公式和辅助角公式化简函数为,当时取最小值.【详解】(1)(2)由可得,故函数的最小值为,当时取得最小值.【点睛】本题考查了三角函数的计算,三角函数的最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国生物基FDCA(2,5-呋喃二甲酸)行业头部企业市场占有率及排名调研报告
- 聘用临时工合同范本
- 锚杆劳务分包合同
- 塔吊司机劳动合同
- 小企业劳动合同
- 劳务合同报酬
- 小产权房房屋租赁合同
- 大货车货物运输合同
- 知识产权合同条款分析
- 城区中心亮化维修工程采购合同
- 改革开放教育援藏的创新及其成效
- 第3课+中古时期的西欧(教学设计)-【中职专用】《世界历史》(高教版2023基础模块)
- 山东省济宁市2023年中考数学试题(附真题答案)
- 班组建设工作汇报
- 供应链金融与供应链融资模式
- 工程类工程公司介绍完整x
- 板带生产工艺热连轧带钢生产
- 关键工序特殊过程培训课件精
- 轮机备件的管理(船舶管理课件)
- 统编《道德与法治》三年级下册教材分析
- 国际尿失禁咨询委员会尿失禁问卷表
评论
0/150
提交评论