版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市八县协作校2024届高一数学第二学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数y=sin2x-πA.向左平行移动π3个单位 B.向右平行移动πC.向右平行移动π3个单位 D.向左平行移动π2.在△中,若,则△为()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形3.已知平行四边形对角线与交于点,设,,则()A. B. C. D.4.在中,,,为的外接圆的圆心,则()A. B.C. D.5.下列关于函数()的叙述,正确的是()A.在上单调递增,在上单调递减B.值域为C.图像关于点中心对称D.不等式的解集为6.若展开式中的系数为-20,则等于()A.-1 B. C.-2 D.7.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.128.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.9.已知等比数列的前项和为,,,则()A.31 B.15 C.8 D.710.在中,若,则的面积为().A.8 B.2 C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.12.若是等比数列,,,且公比为整数,则______.13.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.14.己知函数,,则的值为______.15.已知等差数列中,,则_______16.已知数列{an}的前n项和Sn=2n-3,则数列{an}的通项公式为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知:的顶点,,.(1)求AB边上的中线CD所在直线的方程;(2)求的面积.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若,,求△ABC的面积S.19.2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;(2)试根据茎叶图分析甲同学应在物理和历史中选择哪一门学科?并说明理由;(3)甲同学发现,其物理考试成绩(分)与班级平均分(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.参考数据:,,,.参考公式:,,(计算时精确到).20.如图,在中,,,点在边上,且,.(1)求;(2)求的长.21.已知数列满足.(1)求数列的通项公式;(2)若,为数列的前项和,求证:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
把y=sin【详解】由题得y=sin所以要得到函数y=sin2x-π3的图象,只要将函数故选:B【点睛】本题主要考查三角函数的图像变换,意在考查学生对该知识的理解掌握水平,属于基础题.2、A【解析】
利用正弦定理化简已知条件,得到,由此得到,进而判断出正确选项.【详解】由正弦定理得,所以,所以,故三角形为等腰三角形,故选A.【点睛】本小题主要考查利用正弦定理判断三角形的形状,考查同角三角函数的基本关系式,属于基础题.3、B【解析】
根据向量减法的三角形法则和数乘运算直接可得结果.【详解】本题正确选项:【点睛】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.4、A【解析】
利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.5、D【解析】
运用正弦函数的一个周期的图象,结合单调性、值域和对称中心,以及不等式的解集,可得所求结论.【详解】函数(),在,单调递增,在上单调递减;值域为;图象关于点对称;由可得,解得:.故选:D.【点睛】本题考查三角函数的图象和性质,考查逻辑思维能力和运算能力,属于常考题.6、A【解析】由,可得将选项中的数值代入验证可得,符合题意,故选A.7、C【解析】
由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【点睛】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.8、D【解析】
利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.9、B【解析】
利用基本元的思想,将已知条件转化为的形式,由此求得,进而求得.【详解】由于数列是等比数列,故,由于,故解得,所以.故选:B.【点睛】本小题主要考查等比数列通项公式的基本量的计算,考查等比数列前项和公式,属于基础题.10、C【解析】
由正弦定理结合已知,可以得到的关系,再根据余弦定理结合,可以求出的值,再利用三角形面积公式求出三角形的面积即可.【详解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面积为,故本题选C.【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、0.72【解析】
根据对立事件的概率公式即可求解.【详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【点睛】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.12、512【解析】
由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,
,,
,,
和是方程的两个实数根,
解方程,
得,,
公比q为整数,
,,
,解得,
.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.13、.【解析】试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.14、1【解析】
将代入函数计算得到答案.【详解】函数故答案为:1【点睛】本题考查了三角函数的计算,属于简单题.15、【解析】
设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【详解】设等差数列的公差为,则,因此,,故答案为:。【点睛】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。16、【解析】
利用来求的通项.【详解】,化简得到,填.【点睛】一般地,如果知道的前项和,那么我们可利用求其通项,注意验证时,(与有关的解析式)的值是否为,如果是,则,如果不是,则用分段函数表示.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)11.【解析】
(1)直接利用已知条件求出AB边上的中点,即可求直线的方程.(2)利用所求出的直线方程利用分割法求出三角形的面积,或者求出及直线AB的方程,可得点C到直线AB的距离,求出三角形的面积.【详解】(1)∵线段AB的中点D的坐标为,所以,由两点式方程可得,AB边上的中线CD所在直线的方程为,即.(2)法1:因为,点A到直线CD的距离是,所以的面积是.法2:因为,由两点式得直线AB的方程为:,点C到直线AB的距离是,所以的面积是.【点睛】本题考查直线方程求法与点到直线距离公式应用,属于基础题.18、(1)(1)【解析】试题分析:(1)由已知利用正弦定理,两角和的正弦公式、诱导公式化简可得,结合,可求,进而可求的值;(1)由已知及余弦定理,平方和公式可求的值,进而利用三角形面积公式即可计算得解.试题解析:(1)在△ABC中,∵acosC+ccosA=1bcosA,∴sinAcosC+sinCcosA=1sinBcosA,
∴sin(A+C)=sinB=1sinBcosA,∵sinB≠0,∴,可得:
(1)∵,,∴b1+c1=bc+4,可得:(b+c)1=3bc+4=10,可得:bc=1.∴.19、(1);(2)见解析;(3)见解析【解析】
(1)列出基本事件的所有情况,然后再列出满足条件的所有情况,利用古典概率公式即可得到答案.(2)计算平均值和方差,从而比较甲同学应在物理和历史中选择哪一门学科;(3)先计算和,然后通过公式计算出线性回归方程,然后代入平均值50即可得到答案.【详解】(1)记物理、历史分别为,思想政治、地理、化学、生物分别为,由题意可知考生选择的情形有,,,,,,,,,,,,共12种他选到物理、地理两门功课的满情形有,共3种甲同学选到物理、地理两门功课的概率为(2)物理成绩的平均分为历史成绩的平均分为由茎叶图可知物理成绩的方差历史成绩的方差故从平均分来看,选择物理历史学科均可以;从方差的稳定性来看,应选择物理学科;从最高分的情况来看,应选择历史学科(答对一点即可)(3),,关于的回归方程为当时,,当班级平均分为50分时,其物理考试成绩为73分【点睛】本题主要考查古典概型,统计数的相关含义,线性回归方程的计算,意在考查学生的阅读理解能力,计算能力和分析能力,难度不大.20、(1);(2)7.【解析】试题分析:(I)在中,利用外角的性质,得即可计算结果;(II)由正弦定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学综合练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规押题练习试题B卷含答案
- 重庆市西南大学附中2024-2025学年高一上定时检测(一)语文试题含答案
- 2024年度xx村监测对象风险消除民主评议会议记录
- 湖南省长沙市长郡郡维中学2022-2023学年九年级上学期入学英语试卷(含答案)
- 2024年长沙市事业单位招聘计算机岗位专业知识试题
- 2024年培训学校业务外包协议
- 2024年工程咨询服务具体协议样式
- 2024医疗销售企业合作协议样本
- 2024房屋建筑施工劳务协议详例
- 养老机构(养老院)全套服务管理实用手册
- 企业文化管理第八章企业文化的比较与借鉴
- WST311-2023《医院隔离技术标准》
- 《缕书香伴我同行》课件
- 建设项目竣工环境保护验收管理办法
- 100道解方程 计算题
- 赛事承办服务投标方案(技术方案)
- 概率论(华南农业大学)智慧树知到课后章节答案2023年下华南农业大学
- 上海中考英语专项练习-动词的时态-练习卷一和参考答案
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
- 我们的出行方式 (教学设计)2022-2023学年综合实践活动四年级上册 全国通用
评论
0/150
提交评论