




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省沭阳县修远中学、泗洪县洪翔中学2023-2024学年数学高一下期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若平面α∥平面β,直线平面α,直线n⊂平面β,则直线与直线n的位置关系是()A.平行 B.异面C.相交 D.平行或异面2.在锐角中,内角,,的对边分别为,,,若,则等于()A. B. C. D.3.在中,角A,B,C所对的边分别为a,b,c,,,,则()A. B. C. D.4.等比数列中,,则等于是()A. B.4 C. D.5.()A.0 B.1 C.-1 D.26.在△ABC中,若a=2bsinA,则B为A. B. C.或 D.或7.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.68.在中,,,则的形状是()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定9.已知非零向量,满足,且,则与的夹角为
A. B. C. D.10.下列各数中最小的数是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,为其前项和,若,则,则______.12.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.13.已知向量满足,则14.函数的递增区间是__________.15.在赛季季后赛中,当一个球队进行完场比赛被淘汰后,某个篮球爱好者对该队的7场比赛得分情况进行统计,如表:场次得分104为了对这个队的情况进行分析,此人设计计算的算法流程图如图所示(其中是这场比赛的平均得分),输出的的值______.16.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在△ABC中,cosC=,角B的平分线BD交AC于点D,设∠CBD=θ,其中tanθ=﹣1.(1)求sinA的值;(2)若,求AB的长.18.已知圆C过点,且圆心C在直线上.(1)求圆C的标准方程;(2)若过点(2,3)的直线被圆C所截得的弦的长是,求直线的方程.19.在△ABC中,内角A、B、C所对的边分别为a、b、c,,.(1)若,求△ABC的周长;(2)若CD为AB边上的中线,且,求△ABC的面积.20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称函数是上的有界函数,其中称为函数的上界.已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以3为上界的有界函数,求实数的取值范围;(3)若,函数在上的上界是,求的解析式.21.若,讨论关于x的方程在上的解的个数.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由面面平行的定义,可得两直线无公共点,可得所求结论.【详解】平面α∥平面β,可得两平面α,β无公共点,即有直线与直线也无公共点,可得它们异面或平行,故选:D.【点睛】本题考查空间线线的位置关系,考查面面平行的定义,属于基础题.2、D【解析】
由正弦定理将边化角可求得,根据三角形为锐角三角形可求得.【详解】由正弦定理得:,即故选:【点睛】本题考查正弦定理边化角的应用问题,属于基础题.3、C【解析】
根据正弦定理,得到的值,然后判断出,从而得到.【详解】在中,由正弦定理得,所以,因为,,所以,所以为锐角,所以.故选:C.【点睛】本题考查余弦定理解三角形,属于简单题.4、B【解析】
利用等比数列通项公式直接求解即可.【详解】因为是等比数列,所以.故选:B【点睛】本题考查了等比数列通项公式的应用,属于基础题.5、A【解析】
直接利用三角函数的诱导公式化简求值.【详解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故选A.【点睛】本题考查利用诱导公式化简求值,是基础的计算题.6、C【解析】,,则或,选C.7、B【解析】
由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【点睛】本题主要考查学生的数学抽象和数学建模能力.8、C【解析】
利用余弦定理求出,再利用余弦定理求得的值,即可判断三角形的形状.【详解】在中,,解得:;∵,∵,,∴是直角三角形.故选:C.【点睛】本题考查余弦定理的应用、三角形形状的判定,考查逻辑推理能力和运算求解能力.9、B【解析】
根据题意,建立与的关系,即可得到夹角.【详解】因为,所以,则,则,所以,所以夹角为故选B.【点睛】本题主要考查向量的数量积运算,难度较小.10、D【解析】
将选项中的数转化为十进制的数,由此求得最小值的数.【详解】依题意,,,,故最小的为D.所以本小题选D.【点睛】本小题主要考查不同进制的数比较大小,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【点睛】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.12、5【解析】
根据程序框图依次计算出、、后即可得解.【详解】由程序框图可知,;,;,.所以.故答案为:.【点睛】本题考查了程序框图的应用,属于基础题.13、【解析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.14、;【解析】
先利用辅助角公式对函数化简,由可求解.【详解】函数,由,可得,所以函数的单调增区间为.故答案为:【点睛】本题考查了辅助角公式、正弦函数的图像与性质,需熟记公式与性质,属于基础题.15、【解析】
根据题意,模拟程序框图的运行过程,得出该程序运行的是求数据的标准差,即可求得答案.【详解】模拟程序框图的运行过程知,该程序运行的结果是求这个数据的标准差这组数据的平均数是方差是:标准差是故答案为:.【点睛】本题主要考查了根据程序框图求输出结果,解题关键是掌握程序框图基础知识和计算数据方差的解法,考查了分析能力和计算能力,属于中档题.16、【解析】表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R,,所以该球形容器的表面积的最小值为.【点睛】将表面积最小的球形容器,看成其中两个正四棱柱的外接球,求其半径,进而求体积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据二倍角公式及同角基本关系式,求出cos∠ABC,进而可求出sinA;(2)根据正弦定理求出AC,BC的关系,利用向量的数量积公式求出AC,可得BC,正弦定理可得答案.【详解】(1)由∠CBD=θ,且tanθ1,所以θ∈(0,),所以cos∠ABC,则sin∠ABC,由cosC,得:sinC,sinA=sin[π﹣(∠ABC+∠C)]=sin(∠ABC+∠C).(2)由正弦定理,得,即BCAC;又•AC2•21,∴AC=5,∴ABAC=4.【点睛】本题考查了二倍角公式、同角基本关系式和正弦定理的灵活运用和计算能力,是中档题.18、(1);(2)或.【解析】
(1)设圆心,由两点间的距离及圆心在直线上,列出方程组,求解即可求出圆心坐标,进而求出半径,写出圆的方程(2)由的长是,求出圆心到直线的距离,然后分直线斜率存在与不存在求解.【详解】(1)设圆C的标准方程为依题意可得:解得,半径.∴圆C的标准方程为;(2),∴圆心到直线m的距离①直线斜率不存在时,直线m方程为:;②直线m斜率存在时,设直线m为.,解得∴直线m的方程为∴直线m的方程为或.【点睛】本题主要考查了圆的标准方程,直线与圆的位置关系,点到直线的距离,属于中档题.19、(1)(2)【解析】
(1)由正弦定理可得,再结合余弦定理可得,再求边长即可得解;(2)由余弦定理可得,再利用三角形面积公式求解即可.【详解】解:(1)因为,所以,即,即,即,即,又,则,则,又,则,即,即△ABC的周长为;(2)因为,,在中,由余弦定理可得:,则,即,即,所以.【点睛】本题考查了正弦定理及余弦定理的应用,重点考查了三角形的面积公式,属中档题.20、(1)见解析;(2);(3).【解析】
(1)通过判断函数的单调性,求出的值域,进而可判断在上是否为有界函数;(2)利用题中所给定义,列出不等式,换元,转化为恒成立问题,通过分参求构造函数的最值,就可求得实数的取值范围;(3)通过分离常数法求的值域,利用新定义进而求得的解析式.【详解】(1)当时,,由于在上递减,∴函数在上的值域为,故不存在常数,使得成立,∴函数在上不是有界函数(2)在上是以3为上界的有界函数,即,令,则,即由得,令,在上单调递减,所以由得,令,在上单调递增,所以所以;(3)在上递减,,即,当时,即当时,当时,即当时,∴.【点睛】本题主要考查学生利用所学知识解决创新问题的能力,涉及到函数求值域的有关方法,以及恒成立问题的常见解决思想.21、答案不唯一,见解析【解析】
首先将方程化简为,再画出的图像,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 10万千瓦风电项目可行性研究报告(范文参考)
- 2025年同等学力申硕《工商管理》预测试卷二
- C语言编程实践试题及答案2025年
- JAVA编程测试与评估2025年计算机二级考试试题及答案
- 软件测试多样化学习资源试题及答案
- 常见ACCESS函数应用试题及答案
- 深刻认知软件测试过程中的沟通技巧及试题及答案
- 敏捷环境下的测试策略试题及答案
- C语言学习技巧转变试题及答案2025年
- 核心问题解析2025年嵌入式开发试题及答案
- 河北省课程思政示范课程、教学名师和团队申报书
- 优良学风班答辩
- 医院保安服务项目组织机构与人员配备
- (本科)大学生劳动教育理论与实践教程全书电子教案完整版
- 马拉松赛事策划方案
- 2.3第1.2课时物质的量课件高一上学期化学人教版
- 景观照明项目评估报告
- 电影你的名字课件
- (小学)语文教师书写《写字教学讲座》教育教研讲座教学培训课件
- 设备清洁安全保养培训课件
- plc课程设计模压机控制
评论
0/150
提交评论