版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北安陆一中2023-2024学年数学高一下期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若变量,满足条件,则的最大值是()A.-4 B.-2 C.0 D.22.为数列的前n项和,若,则的值为()A.-7 B.-4 C.-2 D.03.已知扇形的半径为,圆心角为,则该扇形的面积为()A. B. C. D.4.某赛季甲、乙两名篮球运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则下列结论错误的是()A.B.甲得分的方差是736C.乙得分的中位数和众数都为26D.乙得分的方差小于甲得分的方差5.在中,a,b,c分别为角A,B,C的对边,若,,,则解的个数是()A.0 B.1 C.2 D.不确定6.设,若,则数列是()A.递增数列 B.递减数列C.奇数项递增,偶数项递减的数列 D.偶数项递增,奇数项递减的数列7.已知等差数列中,,,则的值为()A.51 B.34 C.64 D.5128.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.99.设,过定点的动直线和过定点的动直线交于点,则的最大值是()A. B. C. D.10.已知不同的两条直线m,n与不重合的两平面,,下列说法正确的是()A.若,,则B.若,,则C.若,,则D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.如图,为测量出高,选择和另一座山的山顶为测量观测点,从点测得点的仰角,点的仰角以及;从点测得.已知山高,则山高__________.12.函数的最小正周期___________.13.走时精确的钟表,中午时,分针与时针重合于表面上的位置,则当下一次分针与时针重合时,时针转过的弧度数的绝对值等于_______.14.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)15.若向量与的夹角为,与的夹角为,则______.16.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,对任意满足,且,数列满足,,其前9项和为63.(1)求数列和的通项公式;(2)令,数列的前项和为,若存在正整数,有,求实数的取值范围;(3)将数列,的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:…,求这个新数列的前项和.18.在中,内角A,B,C的对边分别为a,b,c,已知.求A;已知,的面积为的周长.19.己知,,且函数的图像上的任意两条对称轴之间的距离的最小值是.(1)求的值:(2)将函数的图像向右平移单位后,得到函数的图像,求函数在上的最值,并求取得最值时的的值.20.已知圆经过、、三点.(1)求圆的标准方程;(2)若过点的直线被圆截得的弦的长为,求直线的倾斜角.21.在中,角、、的对边分别为、、,已知.(1)求角的大小;(2)若,点在边上,且,,求边的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由约束条件画出可行域,将问题转化为在轴截距最小,通过平移可知当过时,取最大值,代入可得结果.【详解】由约束条件可得可行域如下图阴影部分所示:当取最大值时,在轴截距最小平移直线可知,当过时,在轴截距最小又本题正确选项:【点睛】本题考查线性规划中的最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过直线平移来进行求解,属于常考题型.2、A【解析】
依次求得的值,进而求得的值.【详解】当时,;当时,,;当时,;故.故选:A.【点睛】本小题主要考查根据递推关系式求数列每一项,属于基础题.3、A【解析】
化圆心角为弧度值,再由扇形面积公式求解即可.【详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【点睛】本题主要考查扇形的面积公式的应用.4、B【解析】
根据题意,依次分析选项,综合即可得答案.【详解】根据题意,依次分析选项:对于A,甲得分的极差为32,30+x﹣6=32,解得:x=8,A正确,对于B,甲得分的平均值为,其方差为,B错误;对于C,乙的数据为:12、25、26、26、31,其中位数、众数都是26,C正确,对于D,乙得分比较集中,则乙得分的方差小于甲得分的方差,D正确;故选:B.【点睛】本题考查茎叶图的应用,涉及数据极差、平均数、中位数、众数、方差的计算,属于基础题.5、B【解析】
由题得,即得B<A,即得三角形只有一个解.【详解】由正弦定理得,所以B只有一解,所以三角形只有一解.故选:B【点睛】本题主要考查正弦定理判定三角形的个数,意在考查学生对这些知识的理解掌握水平,属于基础题.6、C【解析】
根据题意,由三角函数的性质分析可得,进而可得函数为减函数,结合函数与数列的关系分析可得答案。【详解】根据题意,,则,指数函数为减函数即即即即,数列是奇数项递增,偶数项递减的数列,故选:C.【点睛】本题涉及数列的函数特性,利用函数单调性,通过函数的大小,反推变量的大小,是一道中档题目。7、A【解析】
根据等差数列性质;若,则即可。【详解】因为为等差数列,所以,,所以选择A【点睛】本题主要考查了等差数列比较重要的一个性质;在等差数列中若,则,属于基础题。8、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.9、A【解析】
由题意知两直线互相垂直,根据直线分别求出定点与定点,再利用基本不等式,即可得出答案。【详解】直线过定点,直线过定点,又因直线与直线互相垂直,即即,当且仅当时取等号故选A【点睛】本题考查直线位置关系,考查基本不等式,属于中档题。10、C【解析】
依次判断每个选项的正误得到答案.【详解】若,,则或A错误.若,,则或,B错误若,,则,正确若,,则或,D错误故答案选C【点睛】本题考查了线面关系,找出反例是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】试题分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案为1.考点:正弦定理的应用.12、【解析】
利用两角和的正弦公式化简函数表达式,由此求得函数的最小正周期.【详解】依题意,故函数的周期.故填:.【点睛】本小题主要考查两角和的正弦公式,考查三角函数最小正周期的求法,属于基础题.13、.【解析】
设时针转过的角的弧度数为,可知分针转过的角为,于此得出,由此可计算出的值,从而可得出时针转过的弧度数的绝对值的值.【详解】设时针转过的角的弧度数的绝对值为,由分针的角速度是时针角速度的倍,知分针转过的角的弧度数的绝对值为,由题意可知,,解得,因此,时针转过的弧度数的绝对值等于,故答案为.【点睛】本题考查弧度制的应用,主要是要弄清楚时针与分针旋转的角之间的等量关系,考查分析问题和计算能力,属于中等题.14、③④【解析】
①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。15、【解析】
根据向量平行四边形法则作出图形,然后在三角形中利用正弦定理分析.【详解】如图所示,,,所以在中有:,则,故.【点睛】本题考查向量的平行四边形法则的运用,难度一般.在运用平行四边形法则时候,可以适当将其拆分为三角形,利用解三角形中的一些方法去解决问题.16、92【解析】
由题可得,进而可得,再计算出,从而得出答案.【详解】5个样本成份的平均值为,标准差为,所以,,即,解得因为,所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数,解题的关键是求出,属于一般题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】试题分析:(1)由已知得数列是等差数列,从而易得,也即得,利用求得,再求得可得数列通项,利用已知可得是等差数列,由等差数列的基本量法可求得;(2)代入得,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值,从而得的范围,研究的单调性可得;(3)根据新数列的构造方法,在求新数列的前项和时,对分类:,和三类,可求解.试题解析:(1)∵,∴数列是首项为1,公差为的等差数列,∴,即,∴,又,∴.∵,∴数列是等差数列,设的前项和为,∵且,∴,∴的公差为(2)由(1)知,∴,∴设,则,∴数列为递增数列,∴,∵对任意正整数,都有恒成立,∴.(3)数列的前项和,数列的前项和,①当时,;②当时,,特别地,当时,也符合上式;③当时,.综上:考点:等差数列的通项公式,数列的单调性,数列的求和.18、(1);(2)【解析】
(1)在中,由正弦定理及题设条件,化简得,即可求解.(2)由题意,根据题设条件,列出方程,求的,得到,即可求解周长.【详解】(1)在中,由正弦定理及已知得,化简得,,所以.(2)因为,所以,又的面积为,则,则,所以的周长为.【点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.19、(1)1;(1)此时,此时【解析】
(1)由条件利用两角和差的正弦公式化简f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,从而求得f()的值.(1)由条件利用函数y=Asin(ωx+)的图象变换规律求得g(x)的解析式,再根据正弦函数的定义域和值域求得g(x)在x∈[]上的最值.【详解】(1)f(x)=sin(ωx+)+cos(ωx+)=,故,求得ω=1.再根据,可得=﹣,故.(1)将函数y=f(x)的图象向右平移个单位后,得到函数y=g(x)=的图象.∵x∈[],∴,当时,即时,g(x)取得最大值为;当时,即时,g(x)取得最小值为2.【点睛】本题主要考查两角和差的正弦公式,由函数y=Asin(ωx+)的部分图象求解析式,函数y=Asin(ωx+)的图象变换规律,正弦函数的定义域和值域,属于中档题.20、(1);(2)或.【解析】
(1)设出圆的一般方程,然后代入三个点的坐标,联立方程组可解得;(2)讨论直线的斜率是否存在,根据点到直线的距离和勾股定理列式可得直线的倾斜角.【详解】(1)设圆的一般方程为,将点、、的坐标代入圆的方程得,解得,所以,圆的一般方程为,标准方程为;(2)设圆心到直线的距离为,则.①当直线的斜率不存在时,即直线到圆心的距离为,满足题意,此时直线的倾斜角为;②当直线的斜率存在时,设直线的方程为,即,则圆心到直线的距离为,解得,此时,直线的倾斜角为.综上所述,直线的倾斜角为或.【点睛】本题考查圆的方程的求解,同时也考查了利用直线截圆的弦长求直线的倾斜角,一般转化为求圆心到直线的距离,并结合点到直线的距离公式以及勾股定理列等式求解,考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省杭州市2024-2025学年高三第一学期11月教学质量检测语文试题(解析版)
- 兼职协议的制定
- 借款合同书范例
- 建筑防水施工合作协议
- 股权赠与协议书范文
- 房屋改造协议范本
- 事业单位合同工协议范本
- 2024话费托收协议指南
- 房屋买卖合同中的争议解决途径和法律救济
- 商标权转让协议书范文
- 中国科学家光学之父王大珩的红色故事PPT大力弘扬科学家精神PPT课件(带内容)
- 配电网工程施工工艺规范课件
- 财务预算编制说明范文(通用十四篇)
- GCMS气相色谱质谱联用仪基础知识和培训教材课件
- 小学科学招聘考试试题含答案(五套)
- 幼儿园大班语言活动《好长好长的电话》教案
- 主题趣味游戏班会
- 机械工程师招聘
- 博物馆安全生产规章制度
- 张家口市基层诊所基本公共卫生服务医疗机构卫生院社区卫生服务中心村卫生室地址信息
- 监理工程合理化建议
评论
0/150
提交评论