版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区通辽市科尔沁左翼后旗甘旗卡第二高级中学2025届高一下数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在四棱锥中,底面,底面为直角梯形,,,则直线与平面所成角的大小为()A. B. C. D.2.若数列{an}是等比数列,且an>0,则数列也是等比数列.若数列是等差数列,可类比得到关于等差数列的一个性质为().A.是等差数列B.是等差数列C.是等差数列D.是等差数列3.如图所示,AB是半圆O的直径,VA垂直于半圆O所在的平面,点C是圆周上不同于A,B的任意一点,M,N分别为VA,VC的中点,则下列结论正确的是()A.MN//AB B.平面VAC⊥平面VBCC.MN与BC所成的角为45° D.OC⊥平面VAC4.如果角的终边经过点,那么的值是()A. B. C. D.5.等差数列,,,则此数列前项和等于().A. B. C. D.6.已知各项均为正数的数列的前项和为,且若对任意的,恒成立,则实数的取值范围为()A. B. C. D.7.已知随机变量服从正态分布,且,,则()A.0.2 B.0.3 C.0.7 D.0.88.下列四个函数中,以为最小正周期,且在区间上为减函数的是()A. B. C. D.9.直线上的点到圆上点的最近距离为()A. B. C. D.110.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知的内角、、的对边分别为、、,若,,且的面积是,___________.12.已知是等比数列,,,则公比______.13.设偶函数的部分图像如图所示,为等腰直角三角形,,则的值为________.14.关于函数f(x)=4sin(2x+)(x∈R),有下列命题:①y=f(x)的表达式可改写为y=4cos(2x﹣);②y=f(x)是以2π为最小正周期的周期函数;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x=﹣对称.其中正确的命题的序号是.15.在中,角、、所对的边为、、,若,,,则角________.16.数列满足,设为数列的前项和,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列中,.(1)求数列的通项公式;(2)设,求数列的前n项和.18.设向量,,令函数,若函数的部分图象如图所示,且点的坐标为.(1)求点的坐标;(2)求函数的单调增区间及对称轴方程;(3)若把方程的正实根从小到大依次排列为,求的值.19.已知函数的定义域为R(1)求的取值范围;(2)若函数的最小值为,解关于的不等式。20.在中,已知,是边上的一点,,,.(1)求的大小;(2)求的长.21.如图,是边长为2的正三角形.若,平面,平面平面,,且.(1)求证:平面;(2)求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
取中点,中点,连接,先证明为所求角,再计算其大小.【详解】取中点,中点,连接.设易知:平面平面易知:四边形为平行四边形平面,即为直线与平面所成角故答案选A【点睛】本题考查了线面夹角,先找出线面夹角是解题的关键.2、B【解析】试题分析:本题是由等比数列与等差数列的相似性质,推出有关结论:由“等比”类比到“等差”,由“几何平均数”类比到“算数平均数”;所以,所得结论为是等差数列.考点:类比推理.3、B【解析】
对每一个选项逐一分析判断得解.【详解】A.∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;∵MN//AC,AC∩AB=A,∴MN//AB不成立,故A不正确.B.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,∵VA垂直⊙O所在的平面,BC⊂⊙O所在的平面,∴VA⊥BC,又AC∩VA=A,∴BC⊥平面VAC,又BC⊂平面VBC,∴平面VAC⊥平面VBC,故B正确;C.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故B不正确;∵M,N分别为VA,VC的中点,∴MN//AC,又AC⊥BC,∴MN与BC所成的角为90°,故C不正确;D.∵AB是⊙O的直径,点C是圆周上不同于A,B的任意一点,∴AC⊥BC,又A、B、C、O共面,∴OC与AC不垂直,∴OC⊥平面VAC不成立,故D不正确.故选B.【点睛】本题主要考查空间位置关系的证明,考查异面直线所成的角的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.4、D【解析】
根据任意角的三角函数定义直接求解.【详解】因为角的终边经过点,所以,故选:D.【点睛】本题考查任意角的三角函数求值,属于基础题.5、B【解析】由a1+a2+a3=-24,a18+a19+a20=78,得得a1+a20=所以S20=故选D6、C【解析】
由得到an=n,任意的,恒成立等价于,利用作差法求出的最小值即可.【详解】当n=1时,,又∴∵an+12=2Sn+n+1,∴当n≥2时,an2=2Sn﹣1+n,两式相减可得:an+12﹣an2=2an+1,∴an+12=(an+1)2,∵数列{an}是各项均为正数的数列,∴an+1=an+1,即an+1﹣an=1,显然n=1时,适合上式∴数列{an}是等差数列,首项为1,公差为1.∴an=1+(n﹣1)=n.任意的,恒成立,即恒成立记,,∴为单调增数列,即的最小值为∴,即故选C【点睛】已知求的一般步骤:(1)当时,由求的值;(2)当时,由,求得的表达式;(3)检验的值是否满足(2)中的表达式,若不满足则分段表示;(4)写出的完整表达式.7、B【解析】随机变量服从正态分布,所以曲线关于对称,且,由,可知,所以,故选B.8、B【解析】
由条件利用三角函数的周期性和单调性,判断各个选项是否正确,即可求得答案.【详解】对于A,因为的周期为,故A错误;对于B,因为|以为最小正周期,且在区间上为减函数,故B正确;对于C,因为的周期为,故C错误;对于D,因为区间上为增函数,故D错误.故选:B.【点睛】本题主要考查了判断三角函数的周期和在指定区间上的单调性,解题关键是掌握三角函数的基础知识和函数图象,考查了分析能力,属于基础题.9、C【解析】
求出圆心和半径,求圆心到直线的距离,此距离减去半径即得所求的结果.【详解】将圆化为标准形式可得可得圆心为,半径,而圆心到直线距离为,
因此圆上点到直线的最短距离为,故选:C.【点睛】本题考查直线和圆的位置关系,点到直线的距离公式的应用,求圆心到直线的距离是解题的关键,属于中档题.10、A【解析】
根据公式,向量在向量上的投影等于,计算求得结果.【详解】向量在向量上的投影等于.故选A.【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用同角三角函数计算出的值,利用三角形的面积公式和条件可求出、的值,再利用余弦定理求出的值.【详解】,,,且的面积是,,,,,由余弦定理得,.故答案为.【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.12、【解析】
利用等比数列的性质可求.【详解】设等比数列的公比为,则,故.故答案为:【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)(为公比);(3)公比时,则有,其中为常数且;(4)为等比数列()且公比为.13、【解析】的部分图象如图所示,为等腰直角三角形,,,函数是偶函数,,函数的解析式为,故答案为.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,往往利用特殊点求的值,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.14、①③【解析】
∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正确;∵T=,故②不正确;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的图象关于点对称,③正确④不正确;故答案为①③.15、.【解析】
利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.16、【解析】
先利用裂项求和法将数列的通项化简,并求出,由此可得出的值.【详解】,.,因此,,故答案为:.【点睛】本题考查裂项法求和,要理解裂项求和法对数列通项结构的要求,并熟悉裂项法求和的基本步骤,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据等差数列公式得到方程组,计算得到答案.(2)先求出,再利用裂项求和求得.【详解】(1)等差数列中,,解得:(2)数列的前n项和.【点睛】本题考查了数列的通项公式,裂项求和,意在考查学生对于数列公式的灵活运用及计算能力.18、(1)(2)单调递增区间为;对称轴方程为,;(3)14800【解析】
(1)先求出,令求出点B的坐标;(2)利用复合函数的单调性原理求函数的单调增区间,利用三角函数的图像和性质求对称轴方程;(3)由(2)知对称轴方程为,,所以,,…,,即得解.【详解】解:(1)由已知,得∴令,得,,∴,.当时,,∴得坐标为(2)单调递增区间,得,∴单调递增区间为对称轴,得,∴对称轴方程为,(3)由,得,根据正弦函数图象的对称性,且由(2)知对称轴方程为,∴,,…,∴【点睛】本题主要考查三角恒等变换和三角函数的图像和性质,考查等差数列求和,意在考查学生对这些知识的理解掌握水平,属于中档题.19、(1);(2)【解析】
(1)由的定义域为可知,,恒成立,即可求出的范围.(2)结合的范围,运用配方法,即可求出的值,进而求解不等式.【详解】(1)由已知可得对,恒成立,当时,恒成立。当时,则有,解得,综上可知,的取值范围是[0,1](2)由(1)可知的取值范围是[0,1]显然,当时,,不符合.所以,,,由题意得,,,可化为,解得,不等式的解集为。【点睛】主要考查了一元二次不等式在上恒成立求参数范围,配方法以及一元二次不等式求解问题,属于中档题.对任意实数恒成立的条件是;而任意实数恒成立的条件是.20、(1);(2).【解析】试题分析:(1)在中,由余弦定理得,最后根据的值及,即可得到的值;(2)在中,由正弦定理得到,从而代入数据进行运算即可得到的长.试题解析:(1)在中,,由余弦定理可得又因为,所以(2)在中,由正弦定理可得所以.考点:1.正弦定理;2.余弦定理;3.解斜三角形.21、(1)见解析;(2)见解析【解析】
(1)取的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年建材市场商铺租赁及品牌展示合同2篇
- 二零二五版A4一页纸环保印刷定制合同2篇
- 二零二五年度活动板房租赁合同(含消防设施及安全检查)3篇
- 二零二五版城市绿化带基站场地租赁与景观融合合同3篇
- 二零二五版办公室能源管理合同3篇
- 二零二五年度高性能1号不锈钢驳接爪批量采购供货合同2篇
- 二零二五版企业清算注销及员工安置及补偿及债务清理合同3篇
- 二零二五版金融资产抵押交易合同范本3篇
- 二零二五版古建筑修复工程劳务承包施工合同2篇
- 二零二五版钢材现货及期货交易合同示范文本3篇
- 2024质量管理理解、评价和改进组织的质量文化指南
- 手指外伤后护理查房
- 油气回收相关理论知识考试试题及答案
- 我能作业更细心(课件)-小学生主题班会二年级
- 2023年湖北省武汉市高考数学一模试卷及答案解析
- 城市轨道交通的网络安全与数据保护
- 英国足球文化课件
- 《行政职业能力测验》2023年公务员考试新疆维吾尔新疆生产建设兵团可克达拉市预测试题含解析
- 医院投诉案例分析及处理要点
- 烫伤的安全知识讲座
- 工程变更、工程量签证、结算以及零星项目预算程序实施细则(试行)
评论
0/150
提交评论