银川第二中学2024届高一数学第二学期期末综合测试模拟试题含解析_第1页
银川第二中学2024届高一数学第二学期期末综合测试模拟试题含解析_第2页
银川第二中学2024届高一数学第二学期期末综合测试模拟试题含解析_第3页
银川第二中学2024届高一数学第二学期期末综合测试模拟试题含解析_第4页
银川第二中学2024届高一数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

银川第二中学2024届高一数学第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.2.若直线y=﹣x+1的倾斜角为,则A. B.1 C. D.3.已知是定义在上不恒为的函数,且对任意,有成立,,令,则有()A.为等差数列 B.为等比数列C.为等差数列 D.为等比数列4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A.30辆 B.1700辆 C.170辆 D.300辆5.已知,是两条不同的直线,,是两个不同的平面,给出下列四个结论:①,,,则;②若,,,则;③若,,,则;④若,,,则.其中正确结论的序号是A.①③ B.②③ C.①④ D.②④6.以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程是()A.(x-1)2+(y-2)2=10 B.(x-1)2+(y-2)2=100C.(x-1)2+(y-2)2=5 D.(x-1)2+(y-2)2=257.已知等比数列的前项和为,若,则()A. B. C.5 D.68.我国古代数学名著《九章算术》第六章“均输”中有这样一个问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”(注:“均输”即按比例分配,此处是指五人所得成等差数列;“钱”是古代的一种计量单位),则分得最少的一个得到()A.钱 B.钱 C.钱 D.1钱9.已知函数,若,,则()A. B.2 C. D.10.已知,当取得最小值时()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足:,,则数列的前项的和_______.12.已知平行四边形的周长为,,则平行四边形的面积是_______13.已知实数满足,则的最小值为_______.14.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.15.数列满足下列条件:,且对于任意正整数,恒有,则______.16.已知正实数a,b满足2a+b=1,则1a三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设是两个相互垂直的单位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.18.设函数f(x)=x(1)当a=2时,函数f(x)的图像经过点(1,a+1),试求m的值,并写出(不必证明)f(x)的单调递减区间;(2)设a=-1,h(x)+x⋅f(x)=0,g(x)=2cos(x-π3),若对于任意的s∈[1,2],总存在t∈[0,π]19.设函数.(1)若,解不等式;(2)若对一切实数,恒成立,求实数的取值范围.20.如图所示,在平面直角坐标系中,锐角、的终边分别与单位圆交于,两点,点.(1)若点,求的值:(2)若,求.21.设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.2、D【解析】

由题意利用直线的方程先求出它的斜率,可得它的倾斜角α,再利用特殊角的余弦值求得cosα.【详解】∵直线y=﹣x+1的斜率为﹣1,故它的倾斜角为α=135°,则cosα=cos135°=﹣cos45°,故选:D.【点睛】本题主要考查直线的斜率和倾斜角,特殊角的余弦值,属于基础题.3、C【解析】令,得到得到,.,说明为等差数列,故C正确,根据选项,排除A,D.∵.显然既不是等差也不是等比数列.故选C.4、B【解析】

由频率分布直方图求出在这段时间内以正常速度通过该处的汽车的频率,由此能估2000辆车中,在这段时间内以正常速度通过该处的汽车约有多少辆.【详解】由频率分布直方图得:在这段时间内以正常速度通过该处的汽车的频率为0.03+0.035+0.02×10=0.85∴估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有2000×0.85=1700(辆),故选B.【点睛】本题主要考查频率分布直方图的应用,属于中档题.直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.5、C【解析】

利用面面垂直的判定定理判断①;根据面面平行的判定定理判断②;利用线面垂直和线面平行的性质判断③;利用线面垂直和面面平行的性质判断④【详解】①,,或,又,则成立,故正确②若,,或和相交,并不一定平行于,故错误③若,,则或,若,则并不一定平行于,故错误④若,,,又,成立,故正确综上所述,正确的命题的序号是①④故选【点睛】本题主要考查了命题的真假判断和应用,解题的关键是理解线面,面面平行与垂直的判断定理和性质定理,属于基础题.6、D【解析】分析:由条件求出圆心坐标和半径的值,从而得出结论.详解:圆心坐标为(1,2),半径r==5,故所求圆的标准方程为(x-1)2+(y-2)2=25.故选D.点睛:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于基础题.7、A【解析】

先通分,再利用等比数列的性质求和即可。【详解】.故选A.【点睛】本题考查等比数列的性质,属于基础题。8、B【解析】

设所成等差数列的首项为,公差为,利用等差数列前项和公式及通项公式列出方程组,求出首项和公差,进而得出答案.【详解】由题意五人所分钱成等差数列,设得钱最多的为,则公差.所以,则.又,即则,分得最少的一个得到.故选:B【点睛】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.9、C【解析】

由函数的解析式,求得,,进而得到,,结合两角差的余弦公式和三角函数的基本关系式,即可求解.【详解】由题意,函数,令,即,即,所以,令,即,即,所以,又因为,,即,,所以,,即,,平方可得,,两式相加可得,所以.故选:C.【点睛】本题主要考查了两角和与差的余弦公式,三角函数的基本关系式的应用,以及函数的解析式的应用,其中解答中合理应用三角函数的恒等变换的公式进行运算是解答的关键,着重考查了推理与运算能力,属于中档试题.10、D【解析】

可用导函数解决最小值问题,即可得到答案.【详解】根据题意,令,则,而当时,,当时,,则在处取得极小值,故选D.【点睛】本题主要考查函数的最值问题,意在考查学生利用导数工具解决实际问题的能力,难度中等.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

通过令求出数列的前几项,猜测是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.然后根据递推式给予证明,最后由等比数列的前项和公式计算.【详解】当时,,,,,,,当时,,,,,,,当时,,,,,,,猜测,是以为周期的周期数列,且每个周期内都是以为首项,2为公比的等比数列.设中,即,∴,由于都是正整数,所以,所以数列中第项开始大于3,前项是以为首项,2为公比的等比数列.,所以是以为周期的周期数列,所以.故答案为:.【点睛】本题考查等比数列的前项和,考查数列的周期性.解题关键是确定数列的周期性.方法采取的是从特殊到一般,猜想与证明.12、【解析】

设,根据条件可以求出,两边平方可以得到关系式,由余弦定理可以表示出,把代入得到的关系式,联立求出的值,过作垂直于,设,则可以表示,利用勾股定理,求出的值,确定长,即求出平行四边形的面积【详解】设又,由余弦定理将代入,得到将(2)代入(1)得到可以解得:(另一种情况不影响结果),过作垂直于,设,则,所以填写【点睛】几何题如果关系量理清不了,可以尝试作图,引入相邻边的参数,通过方程把参数求出,平行四边形问题可以通过转化变为三角形问题,进而把问题简单化.13、【解析】

实数满足表示点在直线上,可以看作点到原点的距离,最小值是原点到直线的距离,根据点到直线的距离公式求解.【详解】因为实数满足=1所以表示直线上点到原点的距离,故的最小值为原点到直线的距离,即,故的最小值为1.【点睛】本题考查点到点,点到直线的距离公式,此题的关键在于的最小值所表示的几何意义的识别.14、【解析】

根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.15、512【解析】

直接由,可得,这样推下去,再带入等比数列的求和公式即可求得结论。【详解】故选C。【点睛】利用递推式的特点,反复带入递推式进行计算,发现规律,求出结果,本题是一道中等难度题目。16、9【解析】

利用“乘1法”和基本不等式即可得出.【详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ),则存在唯一的使,解得所求参数的值;(Ⅱ)若,则,解得所求参数的值.【详解】解:(Ⅰ)若,则存在唯一的,使,,当时,;(Ⅱ)若,则,因为是两个相互垂直的单位向量,当时,.【点睛】本题考查两个向量平行、垂直的性质,两个向量的数量积公式的应用.18、(1)递减区间为[-2,0)和(0,2【解析】

(1)将点(1,3)代入函数f(x)即可求出m,根据函数的解析式写出单调递减区间即可(2)当a=-1时,写出函数h(x),由题意知h(s)的值域是g(t)值域的子集,即可求出.【详解】(1)因为函数f(x)的图像经过点(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴    ∴f(x)的单调递减区间为[-2,0)(2)当a=-1时,f(x)=x-1∴   ∵g(x)=2cos∴  t∈[0,π]时,g(t)∈[-1,2]由对于任意的s∈[1,2],总存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因为h(x)=-x2-mx+1①当-m2≤1只需满足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②当1<-m2<2因为h(1)=-m>2,与h(s)⊆[-1,2]矛盾,故舍去.③当-m2≥2h(1)=-m≥4与h(s)⊆[-1,2]矛盾,故舍去.综上,m∈[-2,-1].【点睛】本题主要考查了函数的单调性,以及含参数二次函数值域的求法,涉及存在性问题,转化思想和分类讨论思想要求较高,属于难题.19、(1)或;(2)【解析】

(1)时,不等式化为,求解即可;(2)分和两种情况分类讨论,并结合二次函数的性质,可求出答案.【详解】(1)时,不等式化为,即,解得或,即解集为:或.(2)当时,,符合题意,当时,由题意得,解得,综上所述,实数的取值范围是:.【点睛】本题考查不等式恒成立问题,考查一元二次不等式的解法,考查学生的计算求解能力,属于基础题.20、(1)(2)【解析】

(1)根据计算,,代入公式得到答案.(2)根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论