版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省三都民族中学高一下数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了了解所加工的一批零件的长度,抽测了其中个零件的长度,在这个工作中,个零件的长度是()A.总体 B.个体 C.样本容量 D.总体的一个样本2.已知函数,则下列说法正确的是()A.图像的对称中心是B.在定义域内是增函数C.是奇函数D.图像的对称轴是3.设变量满足约束条件,则目标函数的最大值为()A.3 B.4 C.18 D.404.已知数列{an}为等差数列,,=1,若,则=()A.22019 B.22020 C.22017 D.220185.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.6.若函数()有两个不同的零点,则实数m的取值范围是()A. B. C. D.7.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.8.设定义域为的奇函数是增函数,若对恒成立,则实数的取值范围是()A. B. C. D.9.若数列的前项和为,则下列命题:(1)若数列是递增数列,则数列也是递增数列;(2)数列是递增数列的充要条件是数列的各项均为正数;(3)若是等差数列,则的充要条件是;(4)若是等比数列且,则的充要条件是;其中,正确命题的个数是()A.0个 B.1个 C.2个 D.3个10.如图所示,等边的边长为2、为的中点,且也是等边三角形,若以点为中心按逆时针方向旋转后到达的位置,则在转动过程中的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,下列四个命题正确的是________.①若l⊥β,则α⊥β;②若α⊥β,则l⊥m;③若l∥β,则α∥β;④若α∥β,则l∥m.12.函数在区间上的最大值为,则的值是_____________.13.如图,在三棱锥中,它的每个面都是全等的正三角形,是棱上的动点,设,分别记与,所成角为,,则的取值范围为__________.14.七位评委为某跳水运动员打出的分数的茎叶图如图,其中位数为_______.15.某几何体的三视图如图所示,则该几何体的体积为__________.16.已知是第二象限角,且,且______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率18.如图,在正三棱柱中,边的中点为,.⑴求三棱锥的体积;⑵点在线段上,且平面,求的值.19.如图所示,在梯形中,∥,⊥,,⊥平面,⊥.(1)证明:⊥平面;(2)若,求点到平面的距离.20.已知圆,点,直线.(1)求与直线l垂直,且与圆C相切的直线方程;(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,为常数?若存在,试求这个常数值及所有满足条件的点B的坐标;若不存在,请说明理由.21.如图所示,在平面四边形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=-,sin∠CBA=,求BC的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据总体与样本中的相关概念进行判断.【详解】由题意可知,在这个工作中,个零件的长度是总体的一个样本,故选D.【点睛】本题考查总体与样本中相关概念的理解,属于基础题.2、A【解析】
根据正切函数的图象与性质逐一判断即可.【详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选.【点睛】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.3、C【解析】不等式所表示的平面区域如下图所示,当所表示直线经过点时,有最大值考点:线性规划.4、A【解析】
根据等差数列的性质和函数的性质即可求出.【详解】由题知∵数列{an}为等差数列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故选A.【点睛】本题考查了等差数列的性质和函数的性质,考查了运算能力和转化能力,属于中档题,注意:若{an}为等差数列,且m+n=p+q,则,性质的应用.5、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.6、A【解析】
函数()有两个不同的零点等价于函数在均有一个解,再解不等式即可.【详解】解:因为,由函数()有两个不同的零点,则函数在均有一个解,则,解得:,故选:A.【点睛】本题考查了分段函数的零点问题,重点考查了分式不等式的解法,属中等题.7、C【解析】
根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.8、A【解析】
由题意可得,即为,可得恒成立,讨论是否为0,结合换元法和基本不等式,可得所求范围.【详解】解:由题意可得,即为,可得恒成立,当时,上式显然成立;当时,可得,设,,可得,由,可得,可得,即,故选:A.【点睛】本题主要考查函数的奇偶性和单调性的运用,考查不等式恒成立问题解法,注意运用参数分离和换元法,考查化简运算能力,属于中档题.9、B【解析】
对各选项逐个论证或给出反例后可得正确的命题的个数.【详解】对于(1),取,则,因该数列的公差为,故是递增数列.,故,所以数列不是递增数列,故(1)错.对于(2),取,则,数列是递增数列,但,故数列是递增数列推不出的各项均为正数,故(2)错.对于(3),取,则,,故当时,但总成立,故总成立,故推不出,故(3)错.对于(4),设公比为,若,若,则,,矛盾,故.又,故必存在,使得即,即,所以,故,所以是的必要条件.若,则,所以,所以,所以是的充分条件故的充要条件是,故(4)正确.故选:B.【点睛】本题考查数列的单调性、数列的前项和的单调性以及等比数列前项和的积的性质,对于等差数列的单调性,我们可以求出前项和关于的二次函数的形式,再由二次函数的性质讨论其单调性,也可以根据项的符号来判断前项和的单调性.应用等比数列的求和公式时,注意对公比是否为1分类讨论.10、D【解析】
设,,则,则,将其展开,运用向量的数量积的定义,化简得到,再由余弦函数的性质,即可得到范围.【详解】设,,则,则,由于,则,则.故选:D【点睛】本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、①【解析】
由线面的平行垂直的判定和性质一一检验即可得解.【详解】由平面与平面垂直的判定可知,①正确;②中,当α⊥β时,l,m可以垂直,也可以平行,也可以异面;③中,l∥β时,α,β可以相交;④中,α∥β时,l,m也可以异面.故答案为①.【点睛】本题主要考查了线面、面面的垂直和平行位置关系的判定和性质,属于基础题.12、【解析】
利用同角三角函数平方关系,易将函数化为二次型的函数,结合余弦函数的性质,及函数在上的最大值为1,易求出的值.【详解】函数又函数在上的最大值为1,≤0,又,且在上单调递增,所以即.故答案为:【点睛】本题考查的知识点是三角函数的最值,其中利用同角三角函数平方关系,将函数化为二次型的函数,是解答本题的关键,属于中档题.13、【解析】
作交于,连接,可得是与所成的角根据等腰三角形的性质,作交于,同理可得,根据,的关系即可得解.【详解】解:作交于,连接,因为三棱锥中,它的每个面都是全等的正三角形,为正三角形,,,是与所成的角,根据等腰三角形的性质.作交于,同理可得,则,∵,∴,得.故答案为:【点睛】本题考查异面直线所成的角,属于中档题.14、85【解析】
按照茎叶图,将这组数据按照从小到大的顺序排列,找出中间的一个数即可.【详解】按照茎叶图,这组数据是79,83,84,85,87,92,93.把这组数据按照从小到大的顺序排列,最中间一个是85.所以中位数为85.故答案为:85【点睛】本题考查对茎叶图的认识.考查中位数,属于基础题.15、【解析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.16、【解析】
利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,,;(2)分边抽取2,3,1人;(3).【解析】
(1)根据数据表和频率分布直方图可计算得到第组的人数和频率,从而可得总人数;根据总数、频率和频数的关系,可分别计算得到所求结果;(2)首先确定第组的总人数,根据分层抽样原则计算即可得到结果;(3)首先计算得到基本事件总数;再计算出恰好没有年龄段在包含的基本事件个数,根据古典概型概率公式可求得结果.【详解】(1)第组的人数为:人,第组的频率为:第一组的频率为第一组的人数为:第二组的频率为第二组的人数为:第三组的频率为第三组的人数为:第五组的频率为第五组的人数为:(2)第组的总人数为:人第组抽取的人数为:人;第组抽取的人数为:人;第组抽取的人数为:人(3)在(2)中抽取的人中随机抽取人,基本事件总数为:所抽取的人中恰好没有年龄段在包含的基本事件个数为:所抽取的人中恰好没有年龄段在的概率:【点睛】本题考查利用频率分布直方图计算总数、频数和频率、分层抽样基本方法的应用、古典概型计算概率问题;关键是熟练掌握频率分布直方图的相关知识,能够通过频率分布直方图准确计算出各组数据对应的频率.18、(1)(2)【解析】
(1)由题可得平面,故,从而求得三棱锥的体积;(2)连接交于,连接交于,连结,由平面可得,由正三棱柱的性质可得,从而得到的值.【详解】⑴因为为正三棱柱所以平面⑵连接交于,连接交于,连结因为//平面,平面,平面平面,所以,因为为正三棱柱,所以侧面和侧面为平行四边形,从而有为的中点,于是为的中点所以,因为为边的中点,所以也为边中点,从而【点睛】本题考查三棱锥的体积,线面垂直的性质,正三棱柱的性质等知识,属于中档题.19、(1)见解析(2)【解析】
(1)通过⊥,⊥来证明;(2)根据等体积法求解.【详解】(1)证明:∵⊥平面,平面,∴⊥.又⊥,,平面,平面,∴⊥平面.(2)由已知得,所以且由(1)可知,由勾股定理得∵平面∴=,且∴,由,得∴即点到平面的距离为【点睛】本题考查线面垂直与点到平面的距离.线面垂直的证明要转化为线线垂直;点到平面的距离常规方法是作出垂线段求解,此题根据等体积法能简化计算.20、(1)或(2)存在,,【解析】
(1)先设与直线l垂直的直线方程为,再结合点到直线的距离公式求解即可;(2)先设存在,利用都有为常数及在圆上,列出等式,然后利用恒成立求解即可.【详解】解:(1)由直线.则可设与直线l垂直的直线方程为,又该直线与圆相切,则,则,故所求直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年鱼塘水质改善合同3篇
- 2025年陕教新版九年级科学下册月考试卷
- 2025版企业劳动保障专项审计与整改服务合同正规范本3篇
- 2025年上教版七年级地理下册月考试卷含答案
- 2024用人单位试用期员工7天岗位体验合同范本3篇
- 银发经济企业的国际化发展机遇与挑战
- 2025年沪科版选修5历史上册阶段测试试卷
- DG∕TJ 08-2178-2015 全装修住宅室内装修设计标准
- 2025年华师大版必修2化学下册月考试卷
- 浙教版(2023)小学信息技术四年级上册第14课《编码的规则制订》说课稿及反思
- 安全生产事故举报奖励制度
- 冠心病健康教育完整版课件
- 国家开放大学《理工英语1》单元自测8试题答案
- 重症患者的容量管理课件
- 期货基础知识TXT
- 六年级上册道德与法治课件-第一单元 我们的守护者 复习课件-人教部编版(共12张PPT)
- 《尖利的物体会伤人》安全教育课件
- 安全管理体系及保证措施
- 大学生自主创业证明模板
- 启闭机试运行记录-副本
- 少儿美术画画 童画暑假班 7岁-8岁 重彩 《北京烤鸭》
评论
0/150
提交评论