广东省名校三校2024届数学高一下期末质量检测试题含解析_第1页
广东省名校三校2024届数学高一下期末质量检测试题含解析_第2页
广东省名校三校2024届数学高一下期末质量检测试题含解析_第3页
广东省名校三校2024届数学高一下期末质量检测试题含解析_第4页
广东省名校三校2024届数学高一下期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省名校三校2024届数学高一下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.2.已知数列{an}为等差数列,,=1,若,则=()A.22019 B.22020 C.22017 D.220183.设向量,若,则实数的值为()A.1 B.2 C.3 D.44.直线的倾斜角为()A. B. C. D.5.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}6.某单位共有老年人180人,中年人540人,青年人a人,为调查身体健康状况,需要从中抽取一个容量为m的样本,用分层抽样方法抽取进行调查,样本中的中年人为6人,则a和m的值不可以是下列四个选项中的哪组()A.a=810,m=17 B.a=450,m=14C.a=720,m=16 D.a=360,m=127.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.108.直线(是参数)被圆截得的弦长等于()A. B. C. D.9.已知向量,且,则()A.2 B. C. D.10.某赛季中,甲、乙两名篮球队员各场比赛的得分茎叶图如图所示,若甲得分的众数为15,乙得分的中位数为13,则()A.15 B.16 C.17 D.18二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.设,满足约束条件,则的最小值是______.13.方程在上的解集为______.14.已知函数,该函数零点的个数为_____________15.从集合A={-1,1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第三象限的概率为_____.16.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为锐角三角形,内角A,B,C的对边分别为a,b,c,若.(1)求C;(2)若,且的面积为,求的周长.18.已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在区间上的最值以及相应的x的取值.19.已知某校甲、乙、丙三个年级的学生志愿者人数分别是240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动。(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作,求事件M“抽取的2名同学来自同一年级”发生的概率。20.已知函数,.(1)求解不等式;(2)若,求的最小值.21.记Sn为等差数列an的前n项和,已知(1)求an(2)求Sn,并求S

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【点睛】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.2、A【解析】

根据等差数列的性质和函数的性质即可求出.【详解】由题知∵数列{an}为等差数列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故选A.【点睛】本题考查了等差数列的性质和函数的性质,考查了运算能力和转化能力,属于中档题,注意:若{an}为等差数列,且m+n=p+q,则,性质的应用.3、B【解析】

首先求出的坐标,再根据平面向量共线定理解答.【详解】解:,因为,所以,解得.故选:【点睛】本题考查平面向量共线定理的应用,属于基础题.4、C【解析】

求出直线的斜率,然后求解直线的倾斜角.【详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【点睛】本题考查直线的斜率与倾斜角的求法,属于基础题.5、D【解析】

根据并集定义计算.【详解】由题意A∪B={x|-2<x<3}.故选D.【点睛】本题考查集合的并集运算,属于基础题.6、B【解析】

根据分层抽样的规律,计算a和m的关系为:8+a【详解】某单位共有老年人180人,中年人540人,青年人a人,样本中的中年人为6人,则老年人为:180×6540=22+6+代入选项计算,B不符合故答案为B【点睛】本题考查了分层抽样,意在考查学生的计算能力.7、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.8、D【解析】

先消参数得直线普通方程,再根据垂径定理得弦长.【详解】直线(是参数),消去参数化为普通方程:.圆心到直线的距离,∴直线被圆截得的弦长.故选D.【点睛】本题考查参数方程化普通方程以及垂径定理,考查基本分析求解能力,属基础题.9、B【解析】

根据向量平行得到,再利用和差公式计算得到答案.【详解】向量,且,则..故选:.【点睛】本题考查了向量平行求参数,和差公式,意在考查学生的综合应用能力.10、A【解析】

由图可得出,然后可算出答案【详解】因为甲得分的众数为15,所以由茎叶图可知乙得分数据有7个,乙得分的中位数为13,所以所以故选:A【点睛】本题考查的是茎叶图的知识,较简单二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用倍角公式展开,即可得答案.【详解】由,得,即,.故答案为:.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,属于基础题.12、1【解析】

根据不等式组,画出可行域,数形结合求解即可.【详解】由题可知,可行域如下图所示:容易知:,可得:,结合图像可知,的最小值在处取得,则.故答案为:1.【点睛】本题考查线性规划的基础问题,只需作出可行域,数形结合即可求解.13、【解析】

由求出的取值范围,由可得出的值,从而可得出方程在上的解集.【详解】,,由,得.,解得,因此,方程在上的解集为.故答案为:.【点睛】本题考查正切方程的求解,解题时要求出角的取值范围,考查计算能力,属于基础题.14、3【解析】

令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【点睛】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.15、【解析】由题意,基本事件总数为3×3=9,其中满足直线y=kx+b不经过第三象限的,即满足有k=-1,b=1或k=-1,b=2两种,故所求的概率为.16、【解析】

先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据正弦定理可求,利用特殊角三角函数可求C;(2)由和的面积公式,可求,再根据余弦定理求得解出a,b即可求的周长.【详解】(1)因为,所以由正弦定理得,又所以,又为锐角三角形,所以.(2)因为,所以由面积公式得,.又因为,所以由余弦定理得,,所以,或,,故的周长为.【点睛】本题考查正弦定理、余弦定理的应用,三角形面积公式在解三角形中的应用,属于基础题.18、(Ⅰ);(Ⅱ)时,取得最大值2;时,取得最小值.【解析】

(Ⅰ)利用二倍角和两角和与差以及辅助角公式将函数化为y=Asin(ωx+φ)的形式,利用三角函数的周期公式求函数的最小正周期.(Ⅱ)利用x∈[,]上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值.【详解】(Ⅰ)因为函数f(x)=4cosxsin(x)1.化简可得:f(x)=4cosxsinxcos4cos2xsin1sin2x+2cos2x1sin2x+cos2x=2sin(2x)所以的最小正周期为.(Ⅱ)因为,所以.当,即时,f(x)取得最大值2;当,即时,f(x)取得最小值-1.【点睛】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键,属于基础题.19、(1)应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)P【解析】

(1)由分层抽样的性质可得甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,可得抽取7名同学,应分别从甲、乙、丙三个年级分别抽取3人,2人,2人;(2)从抽出的7名同学中随机抽取2名的所有可能结果为21种,其中2名同学来自同一年级的所有可能结果为5种,可得答案.【详解】解:(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2因为采取分层抽样的方法抽取7名同学,所以应分别从甲、乙、丙三个年级分别抽取3人,2人,2人(2)从抽出的7名同学中随机抽取2名的所有可能结果为:ABACADAEAFAGBCBDBEBFBGCDCECF共21种CGDEDFDGEFEGFG不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则2名同学来自同一年级的所有可能结果为:AB,AC,BC,DE,FG共5种P【点睛】本题主要考查分层抽样及利用列举法求时间发生的概率,相对简单.20、(1)或(2)【解析】

(1)对x分类讨论解不等式得解;(2)由题得,再利用基本不等式求函数的最小值.【详解】解:(1)当时,,解得.当时,,解得.所以不等式解集为或.(2),当且仅当,即时取等号.【点睛】本题主要考查分式不等式的解法,考查基本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论