北京市东城171中2024届高一数学第二学期期末监测模拟试题含解析_第1页
北京市东城171中2024届高一数学第二学期期末监测模拟试题含解析_第2页
北京市东城171中2024届高一数学第二学期期末监测模拟试题含解析_第3页
北京市东城171中2024届高一数学第二学期期末监测模拟试题含解析_第4页
北京市东城171中2024届高一数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市东城171中2024届高一数学第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.2.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.执行如图的程序框图,则输出的λ是()A.-2 B.-4 C.0 D.-2或04.一个不透明袋中装有大小、质地完成相同的四个球,四个球上分别标有数字2,3,4,6,现从中随机选取三个球,则所选三个球上的数字能构成等差数列(如:、、成等差数列,满足)的概率是()A. B. C. D.5.正三角形的边长为,如图,为其水平放置的直观图,则的周长为()A. B. C. D.6.若满足,且的最小值为,则实数的值为()A. B. C. D.7.以分别表示等差数列的前项和,若,则的值为A.7 B. C. D.8.记等差数列前项和,如果已知的值,我们可以求得()A.的值 B.的值 C.的值 D.的值9.若正实数,满足,则有下列结论:①;②;③;④.其中正确结论的个数为()A.1 B.2 C.3 D.410.已知向量,,,的夹角为45°,若,则()A. B. C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.若6是-2和k的等比中项,则______.12.如图,,分别为的中线和角平分线,点P是与的交点,若,,则的面积为______.13.当实数a变化时,点到直线的距离的最大值为_______.14.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.15.已知平行四边形的周长为,,则平行四边形的面积是_______16.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C的对边分别是a,b,c,.(1)求角A的大小;(2)若,,求的面积.18.在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.19.已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证:.20.已知数列的前项和为,满足,,数列满足,,且.(1)求数列的通项公式;(2)求证:数列是等差数列,求数列的通项公式;(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.21.已知,且为第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.2、C【解析】

由题意,可知,所以角和角表示终边相同的角,即可得到答案.【详解】由题意,可知,所以角和角表示终边相同的角,又由表示第三象限角,所以是第三象限角,故选C.【点睛】本题主要考查了象限角的表示和终边相同角的表示,其中解答中熟记终边相同角的表示是解答本题的关键,着重考查了推理与计算能力,属于基础题.3、A【解析】

根据框图有,由判断条件即即可求出的值.【详解】由有.根据输出的条件是,即.所以,解得:.故选:A【点睛】本题考查程序框图和向量的加法以及数量积以及性质,属于中档题.4、B【解析】

用列举法写出所有基本事件,确定成等差数列含有的基本事件,计数后可得概率.【详解】任取3球,结果有234,236,246,346共4种,其中234,246是成等差数列的2个基本事件,∴所求概率为.故选:B.【点睛】本题考查古典概型,解题时可用列举法列出所有的基本事件.5、C【解析】

根据斜二测画法以及正余弦定理求解各边长再求周长即可.【详解】由斜二测画法可知,,,.所以.故..故.所以的周长为.故选:C【点睛】本题主要考查了斜二测画法的性质以及余弦定理在求解三角形中线段长度的运用.属于基础题.6、B【解析】

首先画出满足条件的平面区域,然后根据目标函数取最小值找出最优解,把最优解点代入目标函数即可求出的值.【详解】画出满足条件的平面区域,如图所示:,由,解得:,由得:,显然直线过时,z最小,∴,解得:,故选B.【点睛】本题主要考查简单的线性规划,已知目标函数最值求参数的问题,属于常考题型.7、B【解析】

根据等差数列前n项和的性质,当n为奇数时,,即可把转化为求解.【详解】因为数列是等差数列,所以,故,选B.【点睛】本题主要考查了等差数列前n项和的性质,属于中档题.8、C【解析】

设等差数列{an}的首项为a1,公差为d,由a5+a21=2a1+24d的值为已知,再利用等差数列的求和公式,即可得出结论.【详解】设等差数列{an}的首项为a1,公差为d,∵已知a5+a21的值,∴2a1+24d的值为已知,∴a1+12d的值为已知,∵∴我们可以求得S25的值.故选:C.【点睛】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题.9、C【解析】

根据不等式的基本性质,逐项推理判断,即可求解,得到答案.【详解】由题意,正实数是正数,且,①中,可得,所以是错误的;②中,由,可得是正确的;③中,根据实数的性质,可得是正确的;④中,因为,所以是正确的,故选C.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】

利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、-18【解析】

根据等比中项的性质,列出等式可求得结果.【详解】由等比中项的性质可得,,得.故答案为:-18【点睛】本题主要考查等比中项的性质,属于基础题.12、【解析】

设,,求点的坐标,运用换元法,求直线方程,再解出交点的坐标,再利用向量数量积运算求出,最后结合三角形面积公式求解即可.【详解】解:由,可设,,则,设,则,直线的方程为,直线的方程为,联立直线、方程解得,则,,可得,解得:,即,即,所以,故答案为:.【点睛】本题考查了向量的数量积运算,重点考查了两直线的交点坐标及三角形面积公式,属中档题.13、【解析】

由已知直线方程求得直线所过定点,再由两点间的距离公式求解.【详解】由直线,得,联立,解得.直线恒过定点,到直线的最大距离.故答案为:.【点睛】本题考查点到直线距离最值的求法,考查直线的定点问题,是基础题.14、92【解析】

由题可得,进而可得,再计算出,从而得出答案.【详解】5个样本成份的平均值为,标准差为,所以,,即,解得因为,所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数,解题的关键是求出,属于一般题.15、【解析】

设,根据条件可以求出,两边平方可以得到关系式,由余弦定理可以表示出,把代入得到的关系式,联立求出的值,过作垂直于,设,则可以表示,利用勾股定理,求出的值,确定长,即求出平行四边形的面积【详解】设又,由余弦定理将代入,得到将(2)代入(1)得到可以解得:(另一种情况不影响结果),过作垂直于,设,则,所以填写【点睛】几何题如果关系量理清不了,可以尝试作图,引入相邻边的参数,通过方程把参数求出,平行四边形问题可以通过转化变为三角形问题,进而把问题简单化.16、2【解析】

由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由,结合,得到求解.(2)据(1)知.再由余弦定理求得边,再利用求解.【详解】(1)因为,,所以,所以,所以,或(舍去).又因为,所以.(2)由(1)知.由余弦定理得所以,即,所以(舍)或.所以的面积.【点睛】本题主要考查了余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.18、(Ⅰ)(Ⅱ)【解析】

(1)类比等差数列求和的倒序相加法,将等比数列前n项积倒序相乘,可求,代入即可求解.(2)由(1)知,利用两角差的正切公式,化简,,得,再根据裂项相消法,即可求解.【详解】(Ⅰ)由题意,构成递增的等比数列,其中,则①②①②,并利用等比数列性质,得(Ⅱ)由(Ⅰ)知,又所以数列的前项和为【点睛】(Ⅰ)类比等差数列,利用等比数列的相关性质,推导等比数列前项积公式,创新应用型题;(Ⅱ)由两角差的正切公式,推导连续两个自然数的正切之差,构造新型的裂项相消的式子,创新应用型题;本题属于难题.19、(1).(2)见解析.【解析】(1)由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求(2)由(1)可得,利用裂项相消法可求和,即可证明.试题分析:(1)(2)试题解析:(1)由知,当即所以而故数列是以1为首项,1为公差的等差数列,且(2)因为所以考点:数列递推式;等差关系的确定;数列的求和20、(1);(2)证明见解析,;(3)或.【解析】

(1)运用数列的递推式以及数列的和与通项的关系可得,再由等比数列的定义、通项公式可得结果;(2)对等式两边除以,结合等差数列的定义和通项公式,可得所求;(3)求得,由数列的错位相减法求和,可得,化简,即,对任意的成立,运用数列的单调性可得最大值,解不等式可得所求范围.【详解】(1),可得,即;时,,又,相减可得,即,则;(2)证明:,可得,可得是首项和公差均为1的等差数列,可得,即;(3),前n项和为,,相减可得,可得,,即为,即,对任意的成立,由,可得为递减数列,即n=1时取得最大值1−2=−1,可得,即或.【点睛】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论