广东省深圳市红岭中学2024届高一数学第二学期期末复习检测模拟试题含解析_第1页
广东省深圳市红岭中学2024届高一数学第二学期期末复习检测模拟试题含解析_第2页
广东省深圳市红岭中学2024届高一数学第二学期期末复习检测模拟试题含解析_第3页
广东省深圳市红岭中学2024届高一数学第二学期期末复习检测模拟试题含解析_第4页
广东省深圳市红岭中学2024届高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市红岭中学2024届高一数学第二学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象如图所示,则y的表达式为()A. B.C. D.2.已知样本的平均数是10,方差是2,则的值为()A.88 B.96 C.108 D.1103.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形4.设、满足约束条件,则的最大值为()A. B.C. D.5.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B. C. D.6.设,过定点的动直线和过定点的动直线交于点,则的最大值是()A. B. C. D.7.化简结果为()A. B. C. D.8.若数列的前n项的和,那么这个数列的通项公式为()A. B.C. D.9.已知的顶点坐标为,,,则边上的中线的长为()A. B. C. D.10.已知在中,两直角边,,是内一点,且,设,则()A. B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.甲、乙两名新战土组成战术小组进行射击训练,已知单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是______.12.若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.13.将无限循环小数化为分数,则所得最简分数为______;14.已知函数,为的反函数,则_______(用反三角形式表示).15.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175cm,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x,那么x的值为________.16.函数的最小正周期为______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,,.(1)求证数列是等比数列,并求数列的通项公式;(2)设,数列的前项和,求证:18.在等比数列中,,.(1)求的通项公式;(2)若,求数列的前项和.19.设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn.20.已知平面向量,且(1)若是与共线的单位向量,求的坐标;(2)若,且,设向量与的夹角为,求.21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.2、B【解析】

根据平均数和方差公式列方程组,得出和的值,再由可求得的值.【详解】由于样本的平均数为,则有,得,由于样本的方差为,有,得,即,,因此,,故选B.【点睛】本题考查利用平均数与方差公式求参数,解题的关键在于平均数与方差公式的应用,考查计算能力,属于中等题.3、A【解析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.4、C【解析】

作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.5、A【解析】

若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质6、A【解析】

由题意知两直线互相垂直,根据直线分别求出定点与定点,再利用基本不等式,即可得出答案。【详解】直线过定点,直线过定点,又因直线与直线互相垂直,即即,当且仅当时取等号故选A【点睛】本题考查直线位置关系,考查基本不等式,属于中档题。7、A【解析】

根据指数幂运算法则进行化简即可.【详解】本题正确选项:【点睛】本题考查指数幂的运算,属于基础题.8、D【解析】试题分析:根据前n项和与其通项公式的关系式,an=当n≥2时,an=Sn-Sn-1=(3n-2)-(3n-1-2)=2•3n-1.当n=1时,a1=1,不满足上式;所以an=,故答案为an=,选D.考点:本题主要考查数列的求和公式,解题时要根据实际情况注意公式的灵活运用,属于中档题点评:解决该试题的关键是借助公式an=,将前n项和与其通项公式联系起来得到其通项公式的值.9、D【解析】

利用中点坐标公式求得,再利用两点间距离公式求得结果.【详解】由,可得中点又本题正确选项:【点睛】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标.10、A【解析】分析:建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D点坐标为(m,),由平面向量坐标表示,可求出λ和μ.详解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),因为∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则.故选A.点睛:本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用对立事件概率计算公式和相互独立事件概率乘法公式能求出至少有一发击中靶心的概率.【详解】甲、乙两名新战土组成战术小组进行射击训练,单发射击时,甲战士击中靶心的概率为0.8,乙战士击中靶心的概率为0.5,两人射击的情况互不影响若两人各单发射击一次,则至少有一发击中靶心的概率是:.故答案为0.1.【点睛】本题考查概率的求法,考查对立事件概率计算公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.12、【解析】

根据两圆在点处的切线互相垂直,得出是直角三角形,求出,然后两圆相减求出公共弦的直线方程,运用点到直线的距离公式求出圆心到公共弦的距离,进而求出公共弦长.【详解】由题意,圆圆心坐标,半径,圆圆心坐标,半径,因为两圆相交于点,且两圆在点处的切线互相垂直,所以是直角三角形,,所以,由两点间距离公式,,所以,解得,所以圆:,两圆方程相减,得,即,所以公共弦:,圆心到公共弦的距离,故公共弦长故答案为:【点睛】本题主要考查两圆公共弦的方程、圆弦长的求法和点到直线的距离公式,考查学生的分析能力,属于基础题.13、【解析】

将设为,考虑即为,两式相减构造方程即可求解出的值,即可得到对应的最简分数.【详解】设,则,由可知,解得.故答案为:.【点睛】本题考查将无限循环小数化为最简分数,主要采用方程的思想去计算,难度较易.14、【解析】

先将转化为,,然后求出即可【详解】因为所以所以所以所以把与互换可得即所以故答案为:【点睛】本题考查的是反函数的求法,较简单15、2【解析】

根据茎叶图的数据和平均数的计算公式,列出方程,即可求解,得到答案.【详解】由题意,可得,即,解得.【点睛】本题主要考查了茎叶图的认识和平均数的公式的应用,其中解答中根据茎叶图,准确的读取数据,再根据数据的平均数的计算公式,列出方程求解是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】

利用函数y=Atan(ωx+φ)的周期为,得出结论.【详解】函数y=3tan(3x)的最小正周期是,故答案为:.【点睛】本题主要考查函数y=Atan(ωx+φ)的周期性,利用了函数y=Atan(ωx+φ)的周期为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2)见解析.【解析】

(1)根据递推关系式可整理出,从而可证得结论;利用等比数列通项公式首先求解出,再整理出;(2)根据可求得,从而得到的通项公式,利用裂项相消法求得,从而使问题得证.【详解】(1)由得:即,且数列是以为首项,为公比的等比数列数列的通项公式为:(2)由(1)得:又即:【点睛】本题考查利用递推关系式证明等比数列、求解等比数列通项公式、裂项相消法求解数列前项和的问题,属于常规题型.18、(1);(2).【解析】

(1)设出通项公式,利用待定系数法即得结果;(2)先求出通项,利用错位相减法可以得到前项和.【详解】(1)因为,,所以,解得故的通项公式为.(2)由(1)可得,则,①,②①-②得故.【点睛】本题主要考查等比数列的通项公式,错位相减法求和,意在考查学生的分析能力及计算能力,难度中等.19、(1)an=2n﹣1;(2).【解析】

(1)用首项和公差表示出已知关系,求出,可得通项公式;(2)由等差数列前项和公式得结论.【详解】(1)在递增等差数列{an}中,设公差为d>0,∵,∴,解得.∴an=﹣3+(n﹣1)×2=2n﹣1.(2)由(1)知,.【点睛】本题考查等差数列的通项公式和前项和公式,解题方法是基本量法.20、或【解析】分析:(1)由与共线,可设,又由为单位向量,根据,列出方程即可求得向量的坐标;(2)根据向量的夹角公式,即可求解向量与的夹角.详解:与共线,又,则,为单位向量,,或,则的坐标为或,,.点睛:对于平面向量的运算问题,通常用到:1、平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:;2、由向量的数量积的性质有,,,因此利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题;3、本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立的方程.21、(1);(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元.【解析】

(1)由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论