![上海市徐汇区上海中学2024年数学高一下期末考试试题含解析_第1页](http://file4.renrendoc.com/view4/M02/25/01/wKhkGGZlL4OAJR7IAAIAKBDBWHI051.jpg)
![上海市徐汇区上海中学2024年数学高一下期末考试试题含解析_第2页](http://file4.renrendoc.com/view4/M02/25/01/wKhkGGZlL4OAJR7IAAIAKBDBWHI0512.jpg)
![上海市徐汇区上海中学2024年数学高一下期末考试试题含解析_第3页](http://file4.renrendoc.com/view4/M02/25/01/wKhkGGZlL4OAJR7IAAIAKBDBWHI0513.jpg)
![上海市徐汇区上海中学2024年数学高一下期末考试试题含解析_第4页](http://file4.renrendoc.com/view4/M02/25/01/wKhkGGZlL4OAJR7IAAIAKBDBWHI0514.jpg)
![上海市徐汇区上海中学2024年数学高一下期末考试试题含解析_第5页](http://file4.renrendoc.com/view4/M02/25/01/wKhkGGZlL4OAJR7IAAIAKBDBWHI0515.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市徐汇区上海中学2024年数学高一下期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A. B.3 C.6 D.2.已知向量,,则,的夹角为()A. B. C. D.3.已知函数在区间上有最大值,则实数的取值范围是()A. B. C. D.4.等差数列{}中,=2,=7,则=()A.10 B.20 C.16 D.125.若直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,则m的值为()A.7 B.0或7 C.0 D.46.不等式的解集为A. B. C. D.7.若直线与函数的图象相邻的两个交点之间的距离为1,则函数图象的对称中心为()A. B. C. D.8.在,内角所对的边分别为,且,则()A. B. C. D.19.已知是常数,如果函数的图像关于点中心对称,那么的最小值为()A. B. C. D.10.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.12.如图,在等腰直角三角形ABC中,,,以AB为直径在外作半圆O,P是半圆弧AB上的动点,点Q在斜边BC上,若,则的取值范围是________.13.等差数列前项和为,已知,,则_____.14.已知平面向量,若,则________15.设,,,,则数列的通项公式=.16.函数的单调递增区间为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平行四边形中,边所在直线的方程为,点.(Ⅰ)求直线的方程;(Ⅱ)求边上的高所在直线的方程.18.设等差数列的前n项和为,,.(1)求;(2)设,求数列的前n项和.19.如图,在平面直角坐标系xoy中,锐角和钝角的终边分别与单位圆交于A,B两点.(1)若点A的纵坐标是点B的纵坐标是,求的值;(2)若,求的值.20.设递增等差数列{an}的前n项和为Sn,已知a3=1,a4是a3和a7的等比中项,(1)求数列{an}的通项公式;(2)求数列{an}的前n项和Sn.21.已知函数f(x)=2sinxcosx﹣2sin2x,其中x∈R,(1)求函数f(x)的值域及最小正周期;(2)如图,在四边形ABCD中,AD=3,BD,f(A)=0,BC⊥BD,BC=5,求△ABC的面积S△ABC.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用椭圆和双曲线的性质,用椭圆双曲线的焦距长轴长表示,再利用均值不等式得到答案.【详解】设椭圆长轴,双曲线实轴,由题意可知:,又,,两式相减,可得:,,.,,当且仅当时等立,的最小值为6,故选:C.【点睛】本题考查了椭圆双曲线的性质,用椭圆双曲线的焦距长轴长表示是解题的关键,意在考查学生的计算能力.2、A【解析】
由题意得,即可得,再结合即可得解.【详解】由题意知,则.,则,的夹角为.故选:A.【点睛】本题考查了向量数量积的应用,属于基础题.3、B【解析】因为,所以由题设在只有一个零点且单调递减,则问题转化为,即,应选答案B.点睛:解答本题的关键是如何借助题设条件建立不等式组,这是解答本题的难点,也是解答好本题的突破口,如何通过解不等式使得问题巧妙获解.4、D【解析】
根据等差数列的性质可知第五项减去第三项等于公差的2倍,由=+5得到2d等于5,然后再根据等差数列的性质得到第七项等于第五项加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故选D.5、B【解析】
根据直线和直线平行则斜率相等,故m(m-1)=3m×2,求解即可。【详解】∵直线mx+2y+m=0与直线3mx+(m-1)y+7=0平行,∴m(m-1)=3m×2,∴m=0或7,经检验,都符合题意,故选B.【点睛】本题属于基础题,利用直线的平行关系,斜率相等求解参数。6、D【解析】
把不等式化为,即可求解不等式的解集,得到答案.【详解】由题意,不等式可化为,解得或,即不等式的解集为,故选D.【点睛】本题主要考查了一元二次不等式的求解,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】
先计算周期得到,得到函数表达式,再根据中心对称公式得到答案.【详解】直线与函数的图象相邻的两个交点之间的距离为1则的对称中心横坐标为:对称中心为故答案选A【点睛】本题考查了函数的周期,对称中心,意在考查学生综合应用能力.8、C【解析】
直接利用余弦定理求解.【详解】由余弦定理得.故选C【点睛】本题主要考查余弦定理解三角形,意在考查学生对该知识的理解掌握水平,属于基础题.9、C【解析】
将点的坐标代入函数的解析式,得出,求出的表达式,可得出的最小值.【详解】由于函数的图象关于点中心对称,则,,则,因此,当时,取得最小值,故选C.【点睛】本题考查余弦函数的对称性,考查初相绝对值的最小值,解题时要结合题中条件求出初相的表达式,结合表达式进行计算,考查分析问题和解决问题的能力,属于中等题.10、D【解析】
由正弦定理及余弦定理可得,,然后求解即可.【详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【点睛】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、160【解析】
∵某个年级共有980人,要从中抽取280人,∴抽取比例为280980∴此样本中男生人数为27故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题12、【解析】
建立直角坐标系,得出的坐标,利用数量积的坐标表示得出,结合正弦函数的单调性得出的取值范围.【详解】取中点为,建立如下图所示的直角坐标系则,设,,则,则设点,则,则当,即时,取最大值当,即时,取最小值则的取值范围是故答案为:【点睛】本题主要考查了利用数量积求参数以及求正弦型函数的最值,属于较难题.13、1【解析】
首先根据、即可求出和,从而求出。【详解】,①,②①②得,,即,∴,即,∴,故答案为:1.【点睛】本题主要考查了解方程,以及等差数列的性质和前项和。其中等差数列的性质:若则比较常考,需理解掌握。14、1【解析】
根据即可得出,解出即可.【详解】∵;∴;解得,故答案为1.【点睛】本题主要考查向量坐标的概念,以及平行向量的坐标关系,属于基础题.15、2n+1【解析】由条件得,且,所以数列是首项为4,公比为2的等比数列,则.16、【解析】
令,解得的范围即为所求的单调区间.【详解】令,,解得:,的单调递增区间为故答案为:【点睛】本题考查正弦型函数单调区间的求解问题,关键是能够采用整体对应的方式,结合正弦函数的单调区间来进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、解:(Ⅰ)∵是平行四边形直线CD的方程是,即(Ⅱ)∵CE⊥ABCE所在直线方程为,.【解析】略18、(1)(2)【解析】
(1)在等差数列中根据,,可求得其首项与公差,从而可求得;(2)可证明为等比数列,利用等比数列的求和公式计算即可.【详解】(1);(2),所以.【点睛】本题考查等比数列的前项和,着重考查等差数列的性质与通项公式及等比数列的前项和公式,属于基础题.19、(1);(2)【解析】
(1)根据三角函数的定义,求出对应的正弦和余弦值,用正弦的和角公式即可求解;(2)根据题意,先计算出的值,再求解.【详解】(1)由三角函数的定义得,,.由角、的终边分别在第一和第二象限,得:,,所以;(2),则根据,即可得,解得:..故.【点睛】本题考查三角函数的定义,以及由向量的数量积计算模长,属基础题.20、(1)an=2n﹣1;(2).【解析】
(1)用首项和公差表示出已知关系,求出,可得通项公式;(2)由等差数列前项和公式得结论.【详解】(1)在递增等差数列{an}中,设公差为d>0,∵,∴,解得.∴an=﹣3+(n﹣1)×2=2n﹣1.(2)由(1)知,.【点睛】本题考查等差数列的通项公式和前项和公式,解题方法是基本量法.21、(1)值域为[﹣3,1],最小正周期为π;(2).【解析】
(1)化简f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,即可.(2)求得AAB,cos,可得△ABC的面积S△ABC.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届高考英语读后续写说课稿 追车人
- 2025SRV汽化烟道热喷涂合金防护层施工合同
- 2025民间融资合同范本
- 14《母鸡》(说课稿)-2023-2024学年语文四年级下册统编版
- 2025年驾校培训合同范本
- 2025商品购销合同(超市类)
- 2024年五年级数学下册 一 图形的运动(二)1.2画对称图形说课稿 冀教版
- 2024-2025学年高中历史 第一单元 第一次世界大战 第2课 惨烈的四年战事教学说课稿 岳麓版选修3
- 陶土板幕墙施工方案
- 游乐场植物墙施工方案
- 法医病理学课件
- 职代会提案征集表
- 介绍uppc技术特点
- 物业工程工作分配及人员调配方案
- 《谏逐客书》理解性默写(带答案)最详细
- 《黑骏马》读书笔记思维导图
- 2023年物理会考真题贵州省普通高中学业水平考试试卷
- 盘扣式悬挑脚手架专项施工方案
- 劳动防护用品知识考试试题(含答案)
- 高中教师业务知识考试 数学试题及答案
- GB/T 9290-2008表面活性剂工业乙氧基化脂肪胺分析方法
评论
0/150
提交评论